Learn More
Vectors derived from adeno-associated virus (AAV) are promising for human gene therapy, including treatment for retinal blindness. One major limitation of AAVs as vectors is that AAV cargo capacity has been considered to be restricted to 4.7 kb. Here we demonstrate that vectors with an AAV5 capsid (i.e., rAAV2/5) incorporated up to 8.9 kb of genome more(More)
Recent success in clinical trials supports the use of adeno-associated viral (AAV) vectors for gene therapy of retinal diseases caused by defects in the retinal pigment epithelium (RPE). In contrast, evidence of the efficacy of AAV-mediated gene transfer to retinal photoreceptors, the major site of inherited retinal diseases, is less robust. In addition,(More)
Autosomal dominant retinitis pigmentosa caused by the frequent rhodopsin P23H mutation is characterized by progressive photoreceptor cell death eventually leading to blindness and for which no therapies are available. Considering the gain-of-function effect exerted by the P23H mutation, strategies aimed at silencing the expression of the mutated allele,(More)
PURPOSE Mutations in the PDE6B gene cause recessive, severe retinitis pigmentosa (RP). PDE6B encodes the β subunit of the rod-specific phosphodiesterase (βPDE), which, when absent, results in toxic levels of intracellular Ca(2+) and photoreceptor cell death. Ca(2+) blockers, such as nilvadipine, as well as light restriction, slow photoreceptor degeneration(More)
Cell-fusion-mediated somatic-cell reprogramming can be induced in culture; however, whether this process occurs in mammalian tissues remains enigmatic. Here, we show that upon activation of Wnt/β-catenin signaling, mouse retinal neurons can be transiently reprogrammed in vivo back to a precursor stage. This occurs after their spontaneous fusion with(More)
Despite the recent success of gene-based complementation approaches for genetic recessive traits, the development of therapeutic strategies for gain-of-function mutations poses great challenges. General therapeutic principles to correct these genetic defects mostly rely on post-transcriptional gene regulation (RNA silencing). Engineered zinc-finger (ZF)(More)
X-linked recessive ocular albinism type I (OA1) is due to mutations in the OA1 gene (approved gene symbol GPR143), which is expressed in the retinal pigment epithelium (RPE). The Oa1 (Gpr143) knockout mouse (Oa1(-/-)) model recapitulates many of the OA1 retinal morphological anomalies, including a lower number of melanosomes of increased size in the RPE.(More)
PURPOSE Delivery of glial cell-derived neurotrophic factor (GDNF), either as a recombinant protein or by retinal gene transfer results in photoreceptor (PR) neuroprotection in genetic models of retinitis pigmentosa (RP). The mechanism of GDNF action and its direct targets in the retina remain unknown. The goal of the present study was to test the(More)
Given the high genetic heterogeneity of inherited retinal degenerations (IRDs), a wide applicable treatment would be desirable to halt/slow progressive photoreceptor (PR) cell loss in a mutation-independent manner. In addition to its erythropoietic activity, erythropoietin (EPO) presents neurotrophic characteristics. We have previously shown that(More)
Oculo-cutaneous albinism type 1 (OCA1) is characterized by congenital hypopigmentation and is due to mutations in the TYROSINASE gene (TYR). In this study, we have characterized the morpho-functional consequences of the lack of tyrosinase activity in the spontaneous null mouse model of OCA1 (Tyr(c-2j)). Here, we show that adult Tyr(c-2j) mice have several(More)