Uma Karthika Rajarajacholan

Learn More
The INhibitor of Growth (ING) proteins act as type II tumor suppressors and epigenetic regulators, being stoichiometric members of histone acetyltransferase and histone deacetylase complexes. Expression of the alternatively spliced ING1a tumor suppressor increases >10-fold during replicative senescence. ING1a overexpression inhibits growth; induces a large(More)
BACKGROUND The ING family of type II tumour suppressors serve as both epigenetic 'readers' and target histone acetyl transferase (HAT) and histone deacetylase (HDAC) 'writers' of the epigenetic histone code. The ING1 protein has also been implicated in regulating microRNA (miRNA) levels. In this study, we identify a link between ING1b and the miRNA(More)
ING1b is a tumor suppressor that affects transcription, cell cycle control and apoptosis. ING1b is deregulated in disease, and its activity is closely linked to that of p53. In addition to regulating protein-coding genes, we found that ING1b also influences the expression of large intergenic non-coding RNAs (lincRNAs). In particular, lincRNA-p21 was(More)
Cell senescence contributes to organismal aging and is induced by telomere erosion and an ensuing DNA damage signal as cells reach the end of their replicative lifespan in vitro or in vivo. Stresses induced by oncogene or tumor suppressor hyperactivation, oxidative stress, ionizing radiation and other DNA damaging agents result in forms of stress induced(More)
Epigenetic, transcriptional and signaling processes in the nucleolus regulate rRNA transcription and cell growth. We report here that the tumor suppressor ING1b binds rDNA, regulates rDNA chromatin modifications and affects nucleolar localization of mTOR to modulate rRNA levels. ING1 represses rDNA transcription by recruiting HDAC1 to rDNA loci, increasing(More)
  • 1