Ulvi Yurtsever

Learn More
A quantum gravity-gradiometer consists of two spatially separated ensembles of atoms interrogated by pulses of a common laser beam. The laser pulses cause the probability amplitudes of atomic ground-state hyperfine levels to interfere, producing two, motion-sensitive, phase shifts, which allow the measurement of the average acceleration of each ensemble,(More)
For a large class of quantum states, all local (pointwise) energy conditions widely used in relativity are violated by the renormalized stress-energy tensor of a quantum field. In contrast, certain nonlocal positivity constraints on the quantum stress-energy tensor might hold quite generally, and this possibility has received considerable attention in(More)
We discuss some mathematical aspects of the problem of inverting gravitational field data to extract the underlying mass distribution. While the forward problem of computing the gravity field from a given mass distribution is mathematically straightforward, the inverse of this forward map has some interesting features that make inversion a difficult(More)
We devise a new technique to enhance transmission of quantum information through linear optical quantum information processors. The idea is based on applying the Quantum Zeno effect to the process of photon absorption. By frequently monitoring the presence of the photon through a quantum non-demolition (QND) measurement the absorption is suppressed. Quantum(More)