Ulrike Wallrabe

Learn More
We present for the first time a fully MEMS-integrated technology to manufacture 3D geometrically perfect solenoidal microcoils for microscale MRI applications. We report 25 microm isotropic resolution MR images of a copper sulfate aqueous phantom. These images are acquired using microcoils with 5 windings of insulated 25 microm diameter Au wire and with(More)
The complexity of modern surgical and analytical methods requires the miniaturisation of many medical devices. The LIGA technique and also mechanical microengineering are well known for the batch fabrication of microsystems. Actuators and sensors are developed based on these techniques. The hydraulic actuation principle is advantageous for medical(More)
We present the results of a systematic measurement of the magnetic susceptibility of small material samples in a 9.4 T MRI scanner. We measured many of the most widely used materials in MR engineering and MR micro technology, including various polymers, optical and substrate glasses, resins, glues, photoresists, PCB substrates and some fluids. Based on our(More)
We present an extended optical characterization of an adaptive microfluidic silicone-membrane lens at a wavelength of 633 nm, respectively 660 nm. Two different membrane variations; one with a homogeneous membrane thickness, and one with a shaped cross section, have been realized. This paper includes the theoretical predictions of the optical performance(More)
We present a completely revised generation of a modular micro-NMR detector, featuring an active sample volume of ∼ 100 nL, and an improvement of 87% in probe efficiency. The detector is capable of rapidly screening different samples using exchangeable, application-specific, MEMS-fabricated, microfluidic sample containers. In contrast to our previous design,(More)
We present a lab on a chip (LOC) compatible modular platform for magnetic resonance (MR)-based investigation of sub-millimetre samples. The platform combines the advantages offered respectively by microcoils (high resolution at the microscale) and macroscopic surface coils (large field of view) as MR-detectors and consists of a phased array of microcoils(More)
We present for the first time a complete characterization of a micro-solenoid for high resolution MR imaging of mass- and volume-limited samples based on three-dimensional B(0), B(1) per unit current (B(1)(unit)) and SNR maps. The micro-solenoids are fabricated using a fully micro-electromechanical systems (MEMS) compatible process in conjunction with an(More)
Beginning with a short historical sketch, electrodynamic energy harvesters with focus on vibration generators and volumes below 1 dm are reviewed. The current challenges to generate up to several milliwatts of power from practically relevant flows and vibrations are addressed, and the variety of available solutions is sketched. Sixty-seven different(More)
This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS) NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and(More)
In this paper we analyze the capability of adaptive lenses to replace mechanical axial scanning in confocal microscopy. The adaptive approach promises to achieve high scan rates in a rather simple implementation. This may open up new applications in biomedical imaging or surface analysis in micro- and nanoelectronics, where currently the axial scan rates(More)