Learn More
BACKGROUND & AIMS The molecular biology of hepatitis B virus (HBV) has been extensively studied but the exact role of the hepatitis B X protein (HBx) in the context of natural HBV infections remains unknown. METHODS Primary human hepatocytes and differentiated HepaRG cells allowing conditional trans complementation of HBx were infected with wild type(More)
Current antiviral agents can control but not eliminate hepatitis B virus (HBV), because HBV establishes a stable nuclear covalently closed circular DNA (cccDNA). Interferon-α treatment can clear HBV but is limited by systemic side effects. We describe how interferon-α can induce specific degradation of the nuclear viral DNA without hepatotoxicity and(More)
Chronic infection is difficult to overcome because of exhaustion or depletion of cytotoxic effector CD8(+) T cells (cytotoxic T lymphoytes (CTLs)). Here we report that signaling via Toll-like receptors (TLRs) induced intrahepatic aggregates of myeloid cells that enabled the population expansion of CTLs (iMATEs: 'intrahepatic myeloid-cell aggregates for T(More)
Plasmacytoid dendritic cells (pDCs) play a key role in detecting pathogens by producing large amounts of type I interferon (IFN) by sensing the presence of viral infections through the Toll-Like Receptor (TLR) pathway. TLR9 is a sensor of viral and bacterial DNA motifs and activates the IRF7 transcription factor which leads to type I IFN secretion by pDCs.(More)
Hepatitis B virus (HBV) is tightly controlled by a number of noncytotoxic mechanisms. This control occurs within the host hepatocyte at different steps of the HBV replication cycle. HBV persists by establishing a nuclear minichromosome, HBV cccDNA, serving as a transcription template for the viral pregenome and viral mRNAs. Nucleoside/nucleotide analogues(More)
Polyfunctional CD4 or CD8 T cells are proposed to represent a correlate of immune control for persistent viruses as well as for vaccine mediated protection against infection. A well-suited methodology to study complex functional phenotypes of antiviral T cells is the combined staining of intracellular cytokines and phenotypic marker expression using(More)
Sinusoidal endothelial cells and Kupffer cells are the first cell populations in the liver that come into contact with gut-derived endotoxin in portal blood. Although endotoxin concentrations as high as 1 ng/ml are physiologically present in portal blood, no local inflammation is seen. We show that the proinflammatory cytokine IL-6, which is central to the(More)
The X protein (HBX) of the hepatitis B virus (HBV) is not essential for the HBV life cycle in vitro but is important for productive infection in vivo. Our previous study suggests that interaction of HBX with the proteasome complex may underlie the pleiotropic functions of HBX. With the woodchuck model, we demonstrated that the X-deficient mutants of(More)