Ulrike Meier Yang

Learn More
hypre is a software library for the solution of large, sparse linear systems on massively parallel computers. Its emphasis is on modern powerful and scalable preconditioners. hypre provides various conceptual interfaces to enable application users to access the library in the way they naturally think about their problems. This paper presents the conceptual(More)
Algebraic multigrid (AMG) is a very efficient iterative solver and preconditioner for large unstructured linear systems. Traditional coarsening schemes for AMG can, however, lead to computational complexity growth as problem size increases, resulting in increased memory use and execution time, and diminished scalability. Two new parallel AMG coarsening(More)
The hypre software library provides high performance preconditioners and solvers for the solution of large, sparse linear systems on massively parallel computers. One of its attractive features is the provision of conceptual interfaces. These interfaces give application users a more natural means for describing their linear systems, and provide access to(More)
This paper surveys the techniques that are necessary for constructing computationally efficient parallel multigrid solvers. Both geometric and algebraic methods are considered. We first cover the sources of parallelism, including traditional spatial partitioning and more novel additive multilevel methods. We then cover the parallelism issues that must be(More)
Now that the performance of individual cores has plateaued, future supercomputers will depend upon increasing parallelism for performance. Processor counts are now in the hundreds of thousands for the largest machines and will soon be in the millions. There is an urgent need to model application performance at these scales and to understand what changes(More)
The hypre software library (http://www.llnl.gov/CASC/hypre/) is a collection of high performance preconditioners and solvers for large sparse linear systems of equations on massively parallel machines. This paper investigates the scaling properties of several of the popular multigrid solvers and system building interfaces in hypre on two modern parallel(More)
Algebraic multigrid (AMG) is a popular solver for large-scale scientific computing and an essential component of many simulation codes. AMG has shown to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore architectures, we face new challenges that can significantly deteriorate AMG's performance. We examine(More)
Algebraic multigrid (AMG) solvers have proven to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore cluster architectures, we face new challenges that can significantly harm AMG’s performance. We discuss our experiences on such an architecture and present a set of techniques that help users to overcome the(More)