Learn More
Algebraic multigrid (AMG) is a very efficient iterative solver and preconditioner for large unstructured sparse linear systems. Traditional coarsening schemes for AMG can, however, lead to computational complexity growth as problem size increases, resulting in increased memory use and execution time, and diminished scalability. Two new parallel AMG(More)
Now that the performance of individual cores has plateaued, future supercomputers will depend upon increasing parallelism for performance. Processor counts are now in the hundreds of thousands for the largest machines and will soon be in the millions. There is an urgent need to model application performance at these scales and to understand what changes(More)
The software library <i>hypre</i> provides high-performance preconditioners and solvers for the solution of large, sparse linear systems on massively parallel computers as well as conceptual interfaces that allow users to access the library in the way they naturally think about their problems. These interfaces include a stencil-based structured interface(More)
—Algebraic multigrid (AMG) is a popular solver for large-scale scientific computing and an essential component of many simulation codes. AMG has shown to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore architectures, we face new challenges that can significantly deteriorate AMG's performance. We examine(More)
SUMMARY Algebraic multigrid (AMG) is one of the most efficient and scalable parallel algorithms for solving sparse linear systems on unstructured grids. However, for large 3D problems, the coarse grids that are normally used in AMG often lead to growing complexity in terms of memory use and execution time per AMG V-cycle. Sparser coarse grids, such as those(More)