Learn More
In vitro studies on the pathogenesis in swine have been hampered by the lack of relevant porcine cell lines. Since many bacterial infections are swine-specific, studies on pathogenic mechanisms require appropriate cell lines of porcine origin. We have characterized the permanent porcine intestinal epithelial cell line, IPEC-J2, using a variety of methods in(More)
The effects of luminal hyperosmolarity on Na and Cl transport were studied in rumen epithelium of sheep. An increase of luminal osmotic pressure with mannitol (350 and 450 mosm/l) caused a significant increase of tissue conductance, G (T), which is linearly correlated with flux rates of (51)Cr-EDTA and indicates an increase of passive permeability. Studies(More)
Probiotics have shown positive effects on gastrointestinal diseases; they have barrier-modulating effects and change the inflammatory response towards pathogens in studies in vitro. The aim of this investigation has been to examine the response of intestinal epithelial cells to Enterococcus faecium NCIMB 10415 (E. faecium), a probiotic positively affecting(More)
The aim of this study has been to elucidate the effect of the probiotic Enterococcus faecium NCIMB 10415 on epithelial integrity in intestinal epithelial cells and whether pre- and coincubation with this strain can reproducibly prevent damage induced by enterotoxigenic (ETEC) and enteropathogenic Escherichia coli (EPEC). Porcine (IPEC-J2) and human (Caco-2)(More)
High dietary zinc concentrations are used to prevent or treat diarrhea in piglets and humans, but long-term adaptation to high zinc supply has yet not been assessed. Intestinal zinc uptake is facilitated through members of zinc transporter families SLC30 (ZnT) and SLC39 (ZIP). Whereas in rodents, regulation of zinc homeostasis at low or adequate zinc supply(More)
Zinc is an essential trace element with a variety of physiological and biochemical functions. Piglets are commonly supplemented, during the weaning period, with doses of zinc above dietary requirements with positive effects on health and performance that might be attributed to anti-secretory and barrier-enhancing effects in the intestine. For a better(More)
Many studies report positive effects of probiotic supplementation on the performance and health of piglets. The intention of this study was to describe the effects of Enterococcus faecium NCIMB 10415 on the transport and barrier functions of pig small intestine to improve our understanding of the underlying mechanisms of this probiotic. Ussing chamber(More)
The intention of this study was to determine the effects of mucosal osmotic pressure on transport and barrier functions of the rumen epithelium of sheep, which were fed various diets: hay ad libitum, or 600, 1200 or 1800 g day(-1) of a supplemented diet plus hay ad libitum. The experiments were conducted by using the conventional Ussing chamber technique.(More)
Probiotics have been shown to have positive effects on growth performance traits and the health of farm animals. The objective of the study was to examine whether the probiotic strain Enterococcus faecium NCIMB 10415 (E. faecium) changes the absorptive and secretory transport and barrier properties of piglet jejunum in vitro and thereby to verify tendencies(More)
The objective of the study was to assess the effects of feed supplementation with the probiotic Bacillus cereus var. toyoi on transport and barrier properties of pig jejunum. Sows and their respective piglets were randomly assigned to two feeding groups: a control group and a probiotic group in which the standard diet was supplemented with Bacillus cereus(More)