Learn More
MicroRNAs are key regulators of gene expression, but the precise mechanisms underlying their interaction with their mRNA targets are still poorly understood. Here, we systematically investigate the role of target-site accessibility, as determined by base-pairing interactions within the mRNA, in microRNA target recognition. We experimentally show that(More)
BACKGROUND The recent discoveries of microRNA (miRNA) genes and characterization of the first few target genes regulated by miRNAs in Caenorhabditis elegans and Drosophila melanogaster have set the stage for elucidation of a novel network of regulatory control. We present a computational method for whole-genome prediction of miRNA target genes. The method(More)
Drosophila proved an excellent system to study molecular processes in establishing the body pattern of an embryo. Genes which are active during oogenesis provide localized cues which regulate a cascade of zygotic genes that determines the developmental fate of the blastoderm cells along the longitudinal axis of the embryo.
The establishment of complex expression patterns at precise times and locations is key to metazoan development, yet a mechanistic understanding of the underlying transcription control networks is still missing. Here we describe a novel thermodynamic model that computes expression patterns as a function of cis-regulatory sequence and of the binding-site(More)
The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross-) regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers(More)
A Drosophila gene with similarity to the mammalian Ras GTPase activating protein has been isolated in screens for mutations that affect eye development. Inactivation of the locus, Gap1, mimics constitutive activation of the Sevenless receptor tyrosine kinase and eliminates the need for a functional Sevenless protein in the R7 cell. Our results suggest that(More)
The blood-brain barrier of Drosophila is established by surface glia, which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions. The mechanisms underlying the formation of this barrier remain obscure. Here, we show that the G protein-coupled receptor (GPCR) Moody, the G protein subunits G(More)
BACKGROUND Regulation of gene transcription is crucial for the function and development of all organisms. While gene prediction programs that identify protein coding sequence are used with remarkable success in the annotation of genomes, the development of computational methods to analyze noncoding regions and to delineate transcriptional control elements(More)
Cadherin-based adherens junctions (AJs) mediate cell adhesion and regulate cell shape change. The nectin-afadin complex also localizes to AJs and links to the cytoskeleton. Mammalian afadin has been suggested to be essential for adhesion and polarity establishment, but its mechanism of action is unclear. In contrast, Drosophila melanogaster's afadin(More)
MicroRNAs are small noncoding RNAs that control gene function posttranscriptionally through mRNA degradation or translational inhibition. Much has been learned about the processing and mechanism of action of microRNAs, but little is known about their biological function. Here, we demonstrate that injection of 2'O-methyl antisense oligoribonucleotides into(More)