Ulrike Bauer

Learn More
The leaves of Nepenthes pitcher plants are specialized pitfall traps which capture and digest arthropod prey. In many species, insects become trapped by 'aquaplaning' on the wet pitcher rim (peristome). Here we investigate the ecological implications of this capture mechanism in Nepenthes rafflesiana var. typica. We combine meteorological data and(More)
BACKGROUND AND AIMS Nepenthes pitchers are sophisticated traps that employ a variety of mechanisms to attract, capture and retain prey. The underlying morphological structures and physiological processes are subject to change over the lifetime of a pitcher. Here an investigation was carried out on how pitcher properties and capture efficiency change over(More)
Impulses in single afferent fibres from amino acid receptors were recorded extracellularly. Doseresponse relations were determined for different superfused amino acids; the relations all had a slope of 1, a common saturation level, and the action of different amino acids was characterized by a specific half saturation concentration,K M. The most effective(More)
Carnivorous plants of the genus Nepenthes have evolved a striking diversity of pitcher traps that rely on specialized slippery surfaces for prey capture. With a comparative study of trap morphology, we show that Nepenthes pitcher plants have evolved specific adaptations for the use of either one of two distinct trapping mechanisms: slippery wax crystals on(More)
Nepenthes pitcher plants are typically carnivorous, producing pitchers with varying combinations of epicuticular wax crystals, viscoelastic fluids and slippery peristomes to trap arthropod prey, especially ants. However, ant densities are low in tropical montane habitats, thereby limiting the potential benefits of the carnivorous syndrome. Nepenthes lowii,(More)
Carnivorous pitcher plants of the genus Nepenthes capture prey with a pitfall trap that relies on a micro-structured, slippery surface. The upper pitcher rim (peristome) is fully wettable and causes insects to slip by aquaplaning on a thin water film. The high wettability of the peristome is probably achieved by a combination of hydrophilic surface(More)
Carnivorous pitcher plants capture prey with modified leaves (pitchers), using diverse mechanisms such as 'insect aquaplaning' on the wet pitcher rim, slippery wax crystals on the inner pitcher wall, and viscoelastic retentive fluids. Here we describe a new trapping mechanism for Nepenthes gracilis which has evolved a unique, semi-slippery wax crystal(More)
Carnivorous Nepenthes pitcher plants capture arthropods with specialized slippery surfaces. The key trapping surface, the pitcher rim (peristome), is highly slippery when wetted by rain, nectar or condensation, but not when dry. As natural selection should favour adaptations that maximize prey intake, the evolution of temporarily inactive traps seems(More)
Nepenthes pitchers are specialized leaves that function as insect traps. Several pitcher components may contribute to trapping, including the pitcher fluid, slippery wax crystals and downward-pointing epidermal cells on the inner pitcher wall, and the wetness-dependent pitcher rim (peristome), but the relative importance of these traits is unclear.(More)
Responses of pyridine sensitive units on walking legs of the crayfishOrconectes limosus have been studied using extracellular recording techniques. Post-stimulus-time histograms were established and the mean values of the maximal frequencies were plotted in dose-response curves. The curves can be separated into two groups having a slope of 0.3 and 1 in(More)