Learn More
Perceptual events derive their significance to an animal from their meaning about the world, that is from the information they carry about their causes. The brain should thus be able to efficiently infer the causes underlying our sensory events. Here we use multisensory cue combination to study causal inference in perception. We formulate an ideal-observer(More)
The spike timing in rhythmically active interneurons in the mammalian spinal locomotor network varies from cycle to cycle. We tested the contribution from passive membrane properties to this variable firing pattern, by measuring the reliability of spike timing, P, in interneurons in the isolated neonatal rat spinal cord, using intracellular injection of(More)
Recently, it has been shown that visual perception can be radically altered by signals of other modalities. For example, when a single flash is accompanied by multiple auditory beeps, it is often perceived as multiple flashes. This effect is known as the sound-induced flash illusion. In order to investigate the principles underlying this illusion, we(More)
The question of which strategy is employed in human decision making has been studied extensively in the context of cognitive tasks; however, this question has not been investigated systematically in the context of perceptual tasks. The goal of this study was to gain insight into the decision-making strategy used by human observers in a low-level perceptual(More)
Our nervous system typically processes signals from multiple sensory modalities at any given moment and is therefore posed with two important problems: which of the signals are caused by a common event, and how to combine those signals. We investigated human perception in the presence of auditory, visual, and tactile stimulation in a numerosity judgment(More)
Subjects routinely control the vigor with which they emit motoric responses. However, the bulk of formal treatments of decision-making ignores this dimension of choice. A recent theoretical study suggested that action vigor should be influenced by experienced average reward rate and that this rate is encoded by tonic dopamine in the brain. We previously(More)
It has been shown that human combination of crossmodal information is highly consistent with an optimal Bayesian model performing causal inference. These findings have shed light on the computational principles governing crossmodal integration/segregation. Intuitively, in a Bayesian framework priors represent a priori information about the environment,(More)
Prefrontal cortex has long been implicated in tasks involving higher order inference in which decisions must be rendered, not only about which stimulus is currently rewarded, but also which stimulus dimensions are currently relevant. However, the precise computational mechanisms used to solve such tasks have remained unclear. We scanned human participants(More)
Subjects typically choose to be presented with stimuli that predict the existence of future reinforcements. This so-called 'observing behavior' is evident in many species under various experimental conditions, including if the choice is expensive, or if there is nothing that subjects can do to improve their lot with the information gained. A recent study(More)