Ulrich Schwaneberg

Ronny Martinez7
Alexander Dennig6
7Ronny Martinez
6Alexander Dennig
Learn More
Baeyer–Villiger monooxygenase-catalysed reactions are attractive for industrial processes. Here we report on expanding the substrate scope of phenylacetone monooxygenase (PAMO). In order to introduce activity on alicyclic ketones in PAMO, we generated and screened a library of 1,500 mutants. Based on recently published structures of PAMO and its mutants, we(More)
Sequence saturation mutagenesis (SeSaM) is a conceptually novel and practically simple method that truly randomizes a target sequence at every single nucleotide position. A SeSaM experiment can be accomplished within 2-3 days and comprises four steps: generating a pool of DNA fragments with random length, 'tailing' the DNA fragments with universal base(More)
Bacillus subtilis strains are used for extracellular expression of enzymes (i.e., proteases, lipases, and cellulases) which are often engineered by directed evolution for industrial applications. B. subtilis DB104 represents an attractive directed evolution host since it has a low proteolytic activity and efficient secretion. B. subtilis DB104 is hampered(More)
Focused mutant library generation methods have been developed to improve mainly "localizable" enzyme properties such as activity and selectivity. Current multi-site saturation methods are restricted by the gene sequence, require subsequent PCR steps and/or additional enzymatic modifications. Here we report, a multiple site saturation mutagenesis method,(More)
BACKGROUND Channel proteins like the engineered FhuA Δ1-159 often cannot insert into thick polymeric membranes due to a mismatch between the hydrophobic surface of the protein and the hydrophobic surface of the polymer membrane. To address this problem usually specific block copolymers are synthesized to facilitate protein insertion. Within this study in a(More)
BACKGROUND Recently we reported a nanocontainer based reduction triggered release system through an engineered transmembrane channel (FhuA Delta1-160; Onaca et al., 2008). Compound fluxes within the FhuA Delta1-160 channel protein are controlled sterically through labeled lysine residues (label: 3-(2-pyridyldithio)propionic-acid-N-hydroxysuccinimide-ester).(More)
Recombinant protein production in prokaryotic and eukaryotic organisms was a key enabling technology for the rapid development of industrial and molecular biotechnology. However, despite all progress the improvement of protein production is an ongoing challenge and of high importance for cost-effective enzyme production. With the epMEGAWHOP mutagenesis(More)
The combination of computational and directed evolution methods has proven a winning strategy for protein engineering. We refer to this approach as computer-aided protein directed evolution (CAPDE) and the review summarizes the recent developments in this rapidly growing field. We will restrict ourselves to overview the availability, usability and(More)
Phytase improves as a feed supplement the nutritional quality of phytate-rich diets (e.g., cereal grains, legumes, and oilseeds) by hydrolyzing indigestible phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and increasing abdominal absorption of inorganic phosphates, minerals, and trace elements. Directed phytase evolution was reported for(More)
A thermostable glucoamylase (TtcGA) from Thermoanaerobacter tengcongensis MB4 was successfully expressed in Escherichia coli. The full-length gene (2112 bp) encodes a 703-amino acid polypeptide including a predicted signal peptide of 21 residues. The recombinant mature protein was partially purified to 30-fold homogeneity by heat treatment and gel(More)