Learn More
We describe the mechanical separation of the two complementary strands of a single molecule of bacteriophage lambda DNA. The 3' and 5' extremities on one end of the molecule are pulled progressively apart, and this leads to the opening of the double helix. The typical forces along the opening are in the range of 10-15 pN. The separation force signal is(More)
Force measurements are performed on single DNA molecules with an optical trapping interferometer that combines subpiconewton force resolution and millisecond time resolution. A molecular construction is prepared for mechanically unzipping several thousand-basepair DNA sequences in an in vitro configuration. The force signals corresponding to opening and(More)
Mechanical stress plays a key role in many genomic processes, such as DNA replication and transcription. The ability to predict the response of double-stranded (ds) DNA to tension is a cornerstone of understanding DNA mechanics. It is widely appreciated that torsionally relaxed dsDNA exhibits a structural transition at forces of ∼65 pN, known as(More)
Within a single-molecule configuration, we have studied rotational drag on double stranded linear DNA by measuring the force during mechanical opening and closing of the double helix at different rates. The molecule is cranked at one end by the effect of unzipping and is free to rotate at the other end. In this configuration the rotational friction torque(More)
RNA polymerases carry out the synthesis of an RNA copy from a DNA template. They move along DNA, incorporate nucleotide triphosphate (NTP) at the end of the growing RNA chain, and consume chemical energy. In a single-molecule assay using the T7 RNA polymerase, we study how a mechanical force opposing the forward motion of the enzyme along DNA affects the(More)
We theoretically investigate the unzipping of DNA electrically driven through a nanometer-size pore. Taking the DNA base sequence explicitly into account, the unpairing and translocation process is described by a biased random walk in a one-dimensional energy landscape determined by the sequential basepair opening. Distributions of translocation times are(More)
We experimentally show that the voltage driven unzipping of long DNA duplexes by an alpha-hemolysin pore is sensitive to the shape of the base pairing energy landscape. Two sequences of equal global stability were investigated. The sequence with an homogeneous base pairing profile translocates faster than the one with alternative weak and strong regions. We(More)
An integrated array of field-effect transistor structures is used to detect two oppositely charged biopolymers: poly(L-lysine) and DNA. Local deposition of polymer solutions on part of the array induces sizeable variations in the dc current-voltage characteristics of the transistors exposed to the molecular charge. The whole transistor array is measured in(More)
During the past decade, local force measurement techniques, such as atomic force microscopy and optical tweezers, were used to study the elastic properties and mechanically induced structural transitions of nucleic acids at the single-molecule level. Single-molecule manipulation has also increasingly been used to investigate DNA-dependent enzymatic(More)