Learn More
The thermal stabilities of ribonuclease A (RNase A) and ribonuclease B (RNase B), which possess identical protein structures but differ by the presence of a carbohydrate chain attached to Asn34 in RNase B, were studied by proteolysis and UV spectroscopy at pH 8.0. Proteolysis was quantified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and(More)
Although highly stable toward unfolding, native ribonuclease A is known to be cleaved by unspecific proteases in the flexible loop region near Ala20. With the aim to create a protease-resistant ribonuclease A, Ala20 was substituted for Pro by site-directed mutagenesis. The resulting mutant enzyme was nearly identical to the wild-type enzyme in the near-UV(More)
The method of limited proteolysis has proven to be appropriate for the determination of unfolding rate constants (k(U)) of ribonuclease A in the transition region of thermal denaturation [Arnold, U. & Ulbrich-Hofmann, R. (1997) Biochemistry 36, 2166-2172]. The aim of the present paper was to extend this procedure to the pretransition region of thermally and(More)
Moderate temperatures or low concentrations of denaturants diminish the catalytic activity of some enzymes before spectroscopic methods indicate protein unfolding. To discriminate between possible reasons for the inactivation of ribonuclease A, we investigated the influence of temperature and guanidine hydrochloride on its proteolytic susceptibility to(More)
Ribonuclease (RNase) A and the more stable glycosylated RNase B differ by a carbohydrate moiety (GlcNAc2Man5-9) attached to Asn34. As previously shown, the first proteolytic cleavage sites to appear on thermal denaturation of both enzymes are in the structural region around Asn34. To discriminate the contribution of the modifying moiety to the stabilization(More)
Due to their ability to degrade RNA, selected members of the bovine pancreatic ribonuclease A (RNase A) superfamily are potent cytotoxins. These cytotoxic ribonucleases enter the cytosol of target cells, where they degrade cellular RNA and cause cell death. The cytotoxic activity of most RNases, however, is abolished by the cytosolic ribonuclease inhibitor(More)
By reason of their cytotoxicity, ribonucleases (RNases) are potential anti-tumor drugs. Particularly members from the RNase A and RNase T1 superfamilies have shown promising results. Among these enzymes, Onconase, an RNase from the Northern Leopard frog, is furthest along in clinical trials. A general model for the mechanism of the cytotoxic action of(More)
beta-Amino acids are incorporated into an enzyme by using the method of expressed protein ligation. In the resulting semisynthetic enzyme, an R-nipecotic acid-S-nipecotic acid module replaces Asn113 and Pro114 of ribonuclease A. The semisynthetic enzyme not only retains full catalytic activity but also gains conformational stability. Thus, structural(More)
Ribonuclease A contains two exposed loop regions, around Ala20 and Asn34. Only the loop around Ala20 is sufficiently flexible even under native conditions to allow cleavage by nonspecific proteases. In contrast, the loop around Asn34 (together with the adjacent beta-sheet around Thr45) is the first region of the ribonuclease A molecule that becomes(More)
The cytotoxic action of ribonucleases (RNases) requires the interaction of the enzyme with the cellular membrane, its internalization, translocation to the cytosol, and the degradation of ribonucleic acid. The interplay of these processes as well as the role of the thermodynamic and proteolytic stability, the catalytic activity, and the evasion from the(More)