Learn More
The thermal stabilities of ribonuclease A (RNase A) and ribonuclease B (RNase B), which possess identical protein structures but differ by the presence of a carbohydrate chain attached to Asn34 in RNase B, were studied by proteolysis and UV spectroscopy at pH 8.0. Proteolysis was quantified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and(More)
The cytotoxic action of ribonucleases (RNases) requires the interaction of the enzyme with the cellular membrane, its internalization, translocation to the cytosol, and the degradation of ribonucleic acid. The interplay of these processes as well as the role of the thermodynamic and proteolytic stability, the catalytic activity, and the evasion from the(More)
By reason of their cytotoxicity, ribonucleases (RNases) are potential anti-tumor drugs. Particularly members from the RNase A and RNase T1 superfamilies have shown promising results. Among these enzymes, Onconase, an RNase from the Northern Leopard frog, is furthest along in clinical trials. A general model for the mechanism of the cytotoxic action of(More)
Materials. Chemicals were of commercial reagent grade or better, and were used without further purification. Instruments. Peptides were synthesized with an Applied Biosystems Pioneer synthesizer at the University of Wisconsin Biotechnology Center. Mass spectra were obtained with Perkin Elmer Sciex API 365 electrospray ionization (ESI) and Bruker Biflex III(More)
Because of their ability to degrade RNA, RNases are potent cytotoxins. The cytotoxic activity of most members of the RNase A superfamily, however, is abolished by the cytosolic ribonuclease inhibitor (RI). RNase A tandem enzymes, in which two RNase A molecules are artificially connected by a peptide linker, and thus have a pseudodimeric structure, exhibit(More)
Due to their ability to degrade RNA, selected members of the bovine pancreatic ribonuclease A (RNase A) superfamily are potent cytotoxins. These cytotoxic ribonucleases enter the cytosol of target cells, where they degrade cellular RNA and cause cell death. The cytotoxic activity of most RNases, however, is abolished by the cytosolic ribonuclease inhibitor(More)
Onconase (ONC) from Rana pipiens is the smallest member of the ribonuclease A (RNase A) superfamily. Despite a tertiary structure similar to RNase A, ONC is distinguished by an extremely high thermodynamic stability. In the present paper we have probed the significance of three structural regions, which exhibit structural peculiarities in comparison to(More)
The S-peptide and S-protein components of bovine pancreatic ribonuclease form a noncovalent complex with restored ribonucleolytic activity. Although this archetypal protein-fragment complementation system has been the object of historic work in protein chemistry, intrinsic limitations compromise its utility. Modern methods are shown to overcome those(More)
The virtue of the so-called 'proline concept' and the 'charge concept' for stabilizing protease-susceptible regions of a protein structure was compared on bovine pancreatic ribonuclease A. Alanine 20 and serine 21, both of which are located in a loop that is susceptible to the unspecific proteases subtilisin Carlsberg, subtilisin BPN', proteinase K and(More)
The introduction of non-natural amino acid residues or modules into proteins provides a new means to explore the basis for conformational stability, folding/unfolding behavior, or biological function. We exploited intein-mediated protein ligation to produce a semisynthetic ribonuclease A. Of the 124 residues of RNase A, residues 1-94 were linked to an(More)