Learn More
Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently(More)
Here, we analysed a wide range of literature data on the leaf dry mass per unit area (LMA). In nature, LMA varies more than 100-fold among species. Part of this variation (c. 35%) can be ascribed to differences between functional groups, with evergreen species having the highest LMA, but most of the variation is within groups or biomes. When grown in the(More)
Plant canopies are characterized by dramatic gradients of light between canopy top and bottom, and interactions between light, temperature and water vapour deficits. This review summarizes current knowledge of potentials and limitations of acclimation of foliage photosynthetic capacity (A(max)) and light-harvesting efficiency to complex environmental(More)
Foliage structure, chemistry, photosynthetic potentials (V(cmax) and J(max)), and mesophyll diffusion conductance (g(m)) were quantified for 35 broad-leaved species from four sites with contrasting rainfall and soil fertility in eastern Australia. The aim of the study was to estimate the extent to which g(m) and related leaf properties limited(More)
Mesophyll diffusion conductance to CO(2) (g(m)) is an important leaf characteristic determining the drawdown of CO(2) from substomatal cavities (C(i)) to chloroplasts (C(C)). Finite g(m) results in modifications in the shape of the net assimilation (A) versus C(i) response curves, with the final outcome of reduced maximal carboxylase activity of Rubisco(More)
Estimates of leaf gas-exchange characteristics using standard clamp-on leaf chambers are prone to errors because of diffusion leaks. While some consideration has been given to CO(2) diffusion leaks, potential water vapour diffusion leaks through chamber gaskets have been neglected. We estimated diffusion leaks of two clamp-on Li-Cor LI-6400 (Li-Cor, Inc.,(More)
Leaf isoprene emission scales positively with light intensity, is inhibited by high carbon dioxide (CO(2)) concentrations, and may be enhanced or inhibited by low oxygen (O(2)) concentrations, but the mechanisms of environmental regulation of isoprene emission are still not fully understood. Emission controls by isoprene synthase, availability of carbon(More)
Plant-generated volatile organic compounds (BVOCs) play key roles in large-scale atmospheric processes and serve the plants as important defense and signal molecules. The main emphasis in quantitative BVOC studies has been on constitutive emissions of isoprene and specific monoterpene species that are present in only certain emitting plant species. However,(More)
Limited mesophyll diffusion conductance to CO(2) (g(m)) can significantly constrain plant photosynthesis, but the extent of g(m)-limitation is still imperfectly known. As g(m) scales positively with foliage photosynthetic capacity (A), the CO(2) drawdown from substomatal cavities (C(i)) to chloroplasts (C(C), C(i)-C(C)=A/g(m)) rather than g(m) alone(More)
Finite mesophyll diffusion conductance (g(m) ) significantly constrains net assimilation rate (A(n) ), but g(m) variations and variation sources in response to environmental stresses during leaf development are imperfectly known. The combined effects of light and water limitations on g(m) and diffusion limitations of photosynthesis were studied in(More)