Ullrich Pietsch

Learn More
Fourth generation accelerator-based light sources, such as VUV and X-ray Free Electron Lasers (FEL), deliver ultra-brilliant ( 10–10 photons per bunch) coherent radiation in femtosecond ( 10– 100 fs) pulses and, thus, require novel focal plane instrumentation in order to fully exploit their unique capabilities. As an additional challenge for detection(More)
An increase in random molecular vibrations of a solid owing to heating above the melting point leads to a decrease in its long-range order and a loss of structural symmetry. Therefore conventional liquids are isotropic media. Here we report on a light-induced isothermal transition of a polymer film from an isotropic solid to an anisotropic liquid state in(More)
Using scanning X-ray diffraction microscopy with a spot size of 220 x 600 nm, it was possible to inspect individual GaAs nanorods grown seed-free through circular openings in a SiN(x) mask in a periodic array with 3 microm spacing on GaAs[111]B. The focused X-ray beam allows the determination of the strain state of individual rods and, in combination with(More)
A phase transition in an amphiphilic mesophase is explored to deliberately induce mechanical strain in an assembly of tightly coupled metal ion coordination centers. Melting of the alkyl chains in the amphiphilic mesophase causes distortion of the coordination geometry around the central transition metal ion. As a result, the crystal field splitting of the(More)
InAs nanowires that grow catalyst-free along the [111] crystallographic orientation are prone to wurtzite-zincblende polytypism, making the control of the crystal phase highly challenging. In this work, we explore the dynamic relation between the growth conditions and the structural composition of the nanowires using time-resolved X-ray scattering and(More)
Self-assembly of Fe(2+) or Ni(2+) ions and the ditopic ligand 6,6',6''-bis(2-pyridyl)-2,2':4',4'':2'',2'''-quaterpyridine (btpy) through coordinative binding results in rodlike metallosupramolecular coordination polyelectrolytes (Fe-MEPE or Ni-MEPE). Sequential self-assembly with dihexadecyl phosphate (DHP) via electrostatic interactions between MEPE and(More)
A detailed structural analysis of a Langmuir-Blodgett (LB) multilayer composed of a polyelectrolyte-amphiphile complex (PAC) is presented. The PAC is self-assembled from metal ions, ditopic bis-terpyridines, and amphiphiles. The vertical structure of the LB multilayer is investigated by X-ray reflectometry. The multilayer has a periodicity of 57 A, which(More)
Self-assembly of Fe(2+) ions and the rigid ditopic ligand 1,4-bis(2,2':6',2''-terpyridin-4'-yl)benzene results in metallo-supramolecular coordination polyelectrolytes (MEPE). Sequential self-assembly of MEPE and dialkyl phosphoric acid esters of varying chain length via electrostatic interactions leads to the corresponding polyelectrolyte-amphiphile(More)
Using out-of-plane and in-plane X-ray diffraction techniques, we have investigated the structure at the interface between GaAs nanowires [NWs] grown by Au-assisted molecular beam epitaxy and the underlying Si(111) substrate. Comparing the diffraction pattern measured at samples grown for 5, 60, and 1,800 s, we find a plastic strain release of about 75%(More)
We present the results of time-dependent x-ray and visible light (VIS) scattering measurements during formation of surface relief grating (SRG). These gratings are formed on polymer films containing azobenzene side groups during pulselike exposure with a holographic pattern of circularly polarized light at 488 nm. The SRG formation is accompanied by a(More)