Ulla Moilanen

Learn More
Two on-line probes for biomass measurement in bioreactor cultivations were evaluated. One probe is based on near infrared (NIR) light absorption and the other on dielectric spectroscopy. The probes were used to monitor biomass production in cultivations of several different microorganisms. Differences in NIR probe response compared to off-line measurement(More)
The efficient use of cellulases in the hydrolysis of pretreated lignocellulosic biomass is limited due to the presence of lignin. Lignin is known to bind hydrolytic enzymes nonspecifically, thereby reducing their action on carbohydrate substrates. The composition and location of residual lignin therefore seem to be important for optimizing the enzymatic(More)
Biomass measurement is one of the most critical measurements in biotechnological processes. The technologies developed for the measurement of biomass in situ have developed over the years. Because it has been over 10 years since the last review concentrating on practical issues concerning biomass measurements, it is time to evaluate recent developments in(More)
In this paper, we studied the laccase production and the growth morphology of different white-rot fungi, i.e. Pleurotus ostreatus, Trametes pubescens, Cerrena unicolor and Trametes versicolor, cultured under semi-solid-state fermentation conditions using wheat bran flakes as a natural low-cost support substrate. Trametes versicolor exhibited the highest(More)
Non-productive enzyme adsorption onto lignin inhibits enzymatic hydrolysis of lignocellulosic biomass. Three cellobiohydrolases, Trichoderma reesei Cel7A (TrCel7A) and two engineered fusion enzymes, with distinctive modular structures and temperature stabilities were employed to study the effect of temperature on inhibition arising from non-productive(More)
UNLABELLED BACKGROUND The enzymatic hydrolysis step converting lignocellulosic materials into fermentable sugars is recognized as one of the major limiting steps in biomass-to-ethanol process due to the low efficiency of enzymes and their cost. Xylanases have been found to be important in the improvement of the hydrolysis of cellulose due to the close(More)
The behavior of Streptomyces peucetius var. caesius N47 was studied in a glucose limited chemostat with a complex cultivation medium. The steady-state study yielded the characteristic constants μ max over 0.10 h−1, Y XS 0.536 g g−1, and mS 0.54 mg g−1 h−1. The product of secondary metabolism, ɛ-rhodomycinone, was produced with characteristics Y PX 12.99 mg(More)
BACKGROUND The recalcitrance of softwood to enzymatic hydrolysis is one of the major bottlenecks hindering its profitable use as a raw material for platform sugars. In softwood, the guaiacyl-type lignin is especially problematic, since it is known to bind hydrolytic enzymes non-specifically, rendering them inactive towards cellulose. One approach to improve(More)
Lignin-modifying enzymes have various promising applications such as biobleaching, biopulping, the functionalization of lignocellulosic materials, the modification of wood fibers, the remediation of contaminated soil and effluents, as well as improvement of the enzymatic hydrolysis of lignocellulosic substrates. In this study, the production of laccase and(More)
  • 1