Learn More
Antidepressants are commonly supposed to enhance serotonergic and/or noradrenergic neurotransmission by inhibition of neurotransmitter reuptake through binding to the respective neurotransmitter transporters or through inhibition of the monoamine oxidase. Using the concentration-clamp technique and measurements of intracellular Ca2+, we demonstrate that(More)
The serotonin type 3 (5-HT(3)) receptor is the only ligand-gated ion channel receptor for serotonin (5-HT). 5-HT(3) receptors play an important role in modulating the inhibitory action of dopamine in mesocorticolimbic brain regions. Neuroleptic drugs are commonly thought to exert their psychopharmacological action mainly through dopamine and serotonin type(More)
The type 3 serotonin (5-HT(3)) receptor is a ligand-gated ion channel. In concentration-clamp experiments, we investigated the effects of the uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists memantine, amantadine and MRZ 2/579 on 5-HT receptors stabley expressed in HEK-293 cells and on native 5-HT(3) receptors in the N1E-115 cell line. All(More)
Cell assemblies are thought to be the units of information representation in the brain, yet their detection from experimental data is arduous. Here, we propose to infer effective coupling networks and model distributions for the activity of simultaneously recorded neurons in prefrontal cortex, during the performance of a decision-making task, and during(More)
BACKGROUND In Escherichia coli, overlapping rounds of DNA replication allow the bacteria to double in faster times than the time required to copy the genome. The precise timing of initiation of DNA replication is determined by a regulatory circuit that depends on the binding of a critical number of ATP-bound DnaA proteins at the origin of replication,(More)
Inverse problems consist in inferring parameters of model distributions that are able to fit properly chosen features of experimental data-sets. The Inverse Ising problem specifically consists of searching for the maximal entropy distribution reproducing frequencies and correlations of a binary data-set. In order to solve this task, we propose an algorithm(More)
We analyzed recordings of prefrontal cortex activity of a rat in three different phases: while the animal faces a task in which a rule has to be learned and during the previous and subsequent sleep phases. We inferred an Ising model (characterized by binary variables and local fields and couplings as parameters) from the recorded spiking frequencies and(More)
In the early visual system, cells of the same type perform the same computation in di↵erent places of the visual field. How these cells code together a complex visual scene is unclear. A common assumption is that cells of the same type will extract a single stimulus feature to form a feature map, but this has rarely been observed directly. Using large-scale(More)
The principle of maximum entropy provides a useful method for inferring statistical mechanics models from observations in correlated systems, and is widely used in a variety of fields where accurate data are available. While the assumptions underlying maximum entropy are intuitive and appealing, its adequacy for describing complex empirical data has been(More)
In a recent experiment [1] the prefrontal cortex activity of rats was measured using multi-electtrode recordings during the awake epoch and during the previous and subsequent slow wave sleep (SWS) periods. During the awake epoch the animal faces a task, such as following a light in a Y-shaped maze, where rule learning is rewarded with food. Through the(More)