Learn More
When using optoelectronic stereophotogrammetry, skin deformation and displacement causes marker movement with respect to the underlying bone. This movement represents an artifact, which affects the estimation of the skeletal system kinematics, and is regarded as the most critical source of error in human movement analysis. A comprehensive review of the(More)
INTRODUCTION Gait evaluation protocols using instrumented treadmills will be increasingly used in the near future. For this reason, it must be shown that using instrumented treadmills will produce measures of the ground reaction force adequate for inverse dynamic analysis, and differences between treadmill and overground gait must be well characterized. (More)
OBJECTIVES It is not known whether changes in the biomechanics of elderly gait are related to aging per se, or to reduced walking speed in this population. The goals of the present study were to identify specific biomechanical changes, independent of speed, that might impair gait performance in healthy older people by identifying age-associated changes in(More)
This paper sets the stage for a series of reviews dealing with the problems associated with the reconstruction and analysis of in vivo skeletal system kinematics using optoelectronic stereophotogrammetric data. Instantaneous bone position and orientation and joint kinematic variable estimations are addressed in the framework of rigid body mechanics. The(More)
OBJECTIVE To determine if women's dress shoes with heels of just 1.5 in (3.8 cm) in height increases knee joint torques, which are thought to be relevant to the development and/or progression of knee osteoarthritis (OA) in both the medial and patellofemoral compartments. DESIGN Randomized controlled trial. SETTING A 3-dimensional motion analysis gait(More)
When three-dimensional (3-D) human or animal movement is recorded using a photogrammetric system, bone-embedded frame positions and orientations are estimated from reconstructed surface marker trajectories using either nonoptimal or optimal algorithms. The effectiveness of these mathematical procedures in accommodating for both photogrammetric errors and(More)
Estimating the effects of different sources of error on joint kinematics is crucial for assessing the reliability of human movement analysis. The goal of the present paper is to review the different approaches dealing with joint kinematics sensitivity to rotation axes and the precision of anatomical landmark determination. Consistent with the previous(More)
PURPOSE The purpose of this study was to compare the kinematic and kinetic parameters of treadmill running to those of overground running. METHODS Twenty healthy young subjects ran overground at their self-selected moderate running speed. Motion capture and ground reaction force (GRF) data for three strides of each limb were recorded and the subjects'(More)
An improved characterization of the dynamics of postural sway can provide a better understanding about the functional organization of the postural control system as well as a more robust tool for postural pattern recognition. To this aim, a novel parameterization was applied to the stabilogram diffusion analysis formerly proposed by Collins and De Luca(More)
This paper reviews the main aspects involved with the management of instrumental errors associated with video-based optoelectronic stereophotogrammetry. Insights on how such errors propagate to kinematic quantities are of great interest in the field of human movement analysis to improve the precision and reliability of measurements. The review focuses on(More)