Learn More
We recently proposed that competitive endogenous RNAs (ceRNAs) sequester microRNAs to regulate mRNA transcripts containing common microRNA recognition elements (MREs). However, the functional role of ceRNAs in cancer remains unknown. Loss of PTEN, a tumor suppressor regulated by ceRNA activity, frequently occurs in melanoma. Here, we report the discovery of(More)
Stem-cell function is an exquisitely regulated process. Thus far, the contribution of metabolic cues to stem-cell function has not been well understood. Here we identify a previously unknown promyelocytic leukemia (PML)–peroxisome proliferator-activated receptor δ (PPAR-δ)–fatty-acid oxidation (FAO) pathway for the maintenance of hematopoietic stem cells(More)
Competitive endogenous (ce)RNAs cross-regulate each other through sequestration of shared microRNAs and form complex regulatory networks based on their microRNA signature. However, the molecular requirements for ceRNA cross-regulation and the extent of ceRNA networks remain unknown. Here, we present a mathematical mass-action model to determine the optimal(More)
Tumor cells metastasize to distant organs through genetic and epigenetic alterations, including changes in microRNA (miR) expression. Here we find miR-22 triggers epithelial-mesenchymal transition (EMT), enhances invasiveness and promotes metastasis in mouse xenografts. In a conditional mammary gland-specific transgenic (TG) mouse model, we show that miR-22(More)
BACKGROUND Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene(More)
Here we report an integrated analysis that leverages data from treatment of genetic mouse models of prostate cancer along with clinical data from patients to elucidate new mechanisms of castration resistance. We show that castration counteracts tumor progression in a Pten loss-driven mouse model of prostate cancer through the induction of apoptosis and(More)
MicroRNAs are frequently deregulated in cancer. Here we show that miR-22 is upregulated in myelodysplastic syndrome (MDS) and leukemia and its aberrant expression correlates with poor survival. To explore its role in hematopoietic stem cell function and malignancy, we generated transgenic mice conditionally expressing miR-22 in the hematopoietic(More)
Gene coexpression relationships that are phylogenetically conserved between human and mouse have been shown to provide important clues about gene function that can be efficiently used to identify promising candidate genes for human hereditary disorders. In the past, such approaches have considered mostly generic gene expression profiles that cover multiple(More)
Research over the past decade has suggested important roles for pseudogenes in physiology and disease. In vitro experiments demonstrated that pseudogenes contribute to cell transformation through several mechanisms. However, in vivo evidence for a causal role of pseudogenes in cancer development is lacking. Here, we report that mice engineered to(More)
Zbtb7a has previously been described as a powerful proto-oncogene. Here we unexpectedly demonstrate that Zbtb7a has a critical oncosuppressive role in the prostate. Prostate-specific inactivation of Zbtb7a leads to a marked acceleration of Pten loss-driven prostate tumorigenesis through bypass of Pten loss-induced cellular senescence (PICS). We show that(More)