Learn More
The production of equine influenza in Madin-Darby canine kidney (MDCK) cells in large-scale microcarrier culture is described with detailed on- and off-line analytical data during cell growth and virus replication. Metabolite concentration profiles for glucose, glutamine, lactate and ammonium are shown. Lactate and ammonium concentrations were always below(More)
The declaration of pandemic alert Phase 6 for human influenza A (H1N1) by the WHO and the measures taken by individual countries in June 2009 has shown the world how fragile today's resources in pandemic and prepandemic, but also seasonal, vaccines are. Conventionally, human influenza vaccines are produced in embryonated chicken eggs. However, significant(More)
A complete serum-free process without washing steps and medium exchange before infection for influenza A virus vaccine production (equine and human) is described for cultivation in roller bottles and in a 5-L stirred tank microcarrier system. Adherent Madin-Darby canine kidney cells (MDCK) were adapted from growth in serum containing GMEM medium to growth(More)
Cell culture-based influenza vaccine manufacturing is of growing importance. Depending on virus strains, differences in infection dynamics, virus-induced apoptosis, cell lysis and virus yields are observed. Comparatively little is known concerning details of virus-host cell interaction on a cellular level and virus spreading in a population of cells in(More)
In mammalian cell cultures, ammonia that is released into the medium as a result of glutamine metabolism and lactate that is excreted due to incomplete glucose oxidation are both known to essentially inhibit the growth of cells. For some cell lines, for example, hybridoma cells, excreted ammonia also has an effect on product formation. Although glutamine(More)
A process for equine influenza virus vaccine production using a microcarrier system (Cytodex 1) in a 2 L Wave bioreactor is described. Growth of Madin Darby canine kidney (MDCK) cells in serum containing GMEM medium (SC) is compared to growth in serum-free Ex-Cell MDCK medium (SF) without washing steps and medium exchange before infection. Cultivations with(More)
As a basis for the development of predictive mathematical models in systems biology and a quantitative understanding of cellular metabolism, reliable experimental data sets of intracellular metabolites are indispensable. A prerequisite for the acquisition of such data is the identification of a suitable sample preparation method. In this work, the(More)
Many details in cell culture-derived influenza vaccine production are still poorly understood and approaches for process optimization mainly remain empirical. More insights on mammalian cell metabolism after a viral infection could give hints on limitations and cell-specific virus production capacities. A detailed metabolic characterization of an influenza(More)
Lactate and ammonia are the most important waste products of central carbon metabolism in mammalian cell cultures. In particular during batch and fed-batch cultivations these toxic by-products are excreted into the medium in large amounts, and not only affect cell viability and productivity but often also prevent growth to high cell densities. The most(More)
Few suspension cells can be used for vaccine manufacturing today as they either do not meet requirements from health regulatory authorities or do not produce high virus titres. Two new avian designer cell lines (AGE1.CR and AGE1.CR.pIX) that have been adapted to grow in suspension in serum-free medium were evaluated for their potential as host cells for(More)