Learn More
Helicobacter pylori is the only neutralophile that has been able to colonize the human stomach by using a variety of acid-adaptive mechanisms. One of the adaptive mechanisms is increased buffering due to expression of an acid-activated inner membrane urea channel, UreI, and a neutral pH-optimum intrabacterial urease. To delineate other possible adaptive(More)
Plasmid pJP4 of Alcaligenes eutrophus JMP134 encodes the degradation of 2,4-dichlorophenoxyacetic acid. A 1.2-kb BamHI-XhoI region of the restriction fragment BamHI-E has been proposed to contain the regulatory gene tfdR (A. R. Harker, R. H. Olsen, and R. J. Seidler, J. Bacteriol. 171:314-320, 1989; B. Kaphammer, J. J. Kukor, and R. H. Olsen, J. Bacteriol.(More)
To understand the RNA expression in response to acid stress of Helicobacter pylori in genomic scale, a microarray membrane containing 1,534 open reading frames (ORFs) from strain 26695 was used. Total RNAs of H. pylori under growth conditions of pH 7.2 and 5.5 were extracted, reverse transcribed into cDNA, and labeled with biotin. Each microarray membrane(More)
Pseudomonas fluorescens HK44 is a bioluminescent bioreporter synthesizing light in the presence of naphthalene or salicylate. Upon immobilization, HK44 is useful as an in situ or on-line biosensor of bioavailable naphthalene and salicylate in waste streams or contaminated fields. The bioreporting efficacy of alginate/SrCl2-immobilized HK44 was investigated(More)
The reporter bacterium, Pseudomonas fluorescens HK44 (HK44), was characterized in an immobilized state to investigate utility for deployment as a remote sensor in the subsurface. A packed-bed reactor with alginate-immobilized HK44 simulated hydrodynamic conditions such as might be found in a subsurface environment. The reporter bacterium, HK44, harbors a(More)
  • 1