Learn More
BACKGROUND Ehlers-Danlos syndrome type IV, the vascular type, results from mutations in the gene for type III procollagen (COL3A1). Affected patients are at risk for arterial, bowel, and uterine rupture, but the timing of these events, their frequency, and the course of the disease are not well documented. METHODS We reviewed the clinical and family(More)
Osteogenesis imperfecta (OI) is characterized by bone fragility and fractures that may be accompanied by bone deformity, dentinogenesis imperfecta, short stature, and shortened life span. About 90% of individuals with OI have dominant mutations in the type I collagen genes COL1A1 and COL1A2. Recessive forms of OI resulting from mutations in(More)
Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proalpha1(I) and proalpha2(I) chains,(More)
Prolyl hydroxylation is a critical posttranslational modification that affects structure, function, and turnover of target proteins. Prolyl 3-hydroxylation occurs at only one position in the triple-helical domain of fibrillar collagen chains, and its biological significance is unknown. CRTAP shares homology with a family of putative prolyl 3-hydroxylases(More)
BACKGROUND The Loeys-Dietz syndrome is a recently described autosomal dominant aortic-aneurysm syndrome with widespread systemic involvement. The disease is characterized by the triad of arterial tortuosity and aneurysms, hypertelorism, and bifid uvula or cleft palate and is caused by heterozygous mutations in the genes encoding transforming growth factor(More)
Autosomal dominant osteogenesis imperfecta (OI) is caused by mutations in the genes (COL1A1 or COL1A2) encoding the chains of type I collagen. Recently, dysregulation of hydroxylation of a single proline residue at position 986 of both the triple-helical domains of type I collagen alpha1(I) and type II collagen alpha1(II) chains has been implicated in the(More)
Adult stem cells offer the potential to treat many diseases through a combination of ex vivo genetic manipulation and autologous transplantation. Mesenchymal stem cells (MSCs, also referred to as marrow stromal cells) are adult stem cells that can be isolated as proliferating, adherent cells from bones. MSCs can differentiate into multiple cell types(More)
Ehlers-Danlos syndrome (EDS) type VIIC is a recessively inherited connective-tissue disorder, characterized by extreme skin fragility, characteristic facies, joint laxity, droopy skin, umbilical hernia, and blue sclera. Like the animal model dermatosparaxis, EDS type VIIC results from the absence of activity of procollagen I N-proteinase (pNPI), the enzyme(More)
Ehlers-Danlos syndrome (EDS) type I (the classical variety) is a dominantly inherited, genetically heterogeneous connective-tissue disorder. Mutations in the COL5A1 and COL5A2 genes, which encode type V collagen, have been identified in several individuals. Most mutations affect either the triple-helical domain of the protein or the expression of one COL5A1(More)
Mesenchymal stem cells (MSCs) are adult cells with the capacity to differentiate into multiple cell types, including bone, fat, cartilage, and muscle cells. In order to effectively utilize autologous MSCs in cell-based therapies, precise genetic manipulations are required to eliminate the effects of disease-causing mutations. We previously used(More)