U. Dragosits

Learn More
Ammonia emissions (NH3) are characterised by a high spatial variability at a local scale. When modelling the spatial distribution of NH3 emissions, it is important to provide robust emission estimates, since the model output is used to assess potential environmental impacts, e.g. exceedance of critical loads. The aim of this study was to provide a new,(More)
A local ammonia (NH3) inventory for a 5x5 km area in central England was developed, to investigate the variability of emissions, deposition and impacts of NH3 at a field scale, as well as to assess the validity of the UK 5-km grid inventory. Input data were available for the study area for 1993 and 1996 on a field by field basis, allowing NH3 emissions to(More)
Knowledge of the sources and distribution of ammonia (NH3) emissions underpins our understanding of the nitrogen budget. Research has focused on quantifying NH3 emissions from anthropogenic sources, whilst those from natural sources have received little attention internationally. Seabirds excrete large quantities of nitrogen, making seabird colonies a major(More)
Trees have been widely quoted as effective scavengers of both gaseous and particulate pollutants from the atmosphere. Recent work on the deposition of urban aerosols onto woodland allows the effect of tree planting strategies on airborne aerosol concentrations to be quantified and considered within the planning process. By identifying the potential planting(More)
Recent research in nitrogen exchange with the atmosphere has separated research communities according to N form. The integrated perspective needed to quantify the net effect of N on greenhouse-gas balance is being addressed by the NitroEurope Integrated Project (NEU). Recent advances have depended on improved methodologies, while ongoing challenges include(More)
An atmospheric transport model, FRAME (Fine Resolution AMmonia Exchange), has been used to model the spatial pattern of ammonia concentrations and deposition over the British Isles for the first time. The model uses a multi-layer approach with diffusion through 33 layers to describe vertical concentration profiles in the atmosphere explicitly. Together with(More)
Existing descriptions of bi-directional ammonia (NH3) land-atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main(More)
Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N(2)O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity(More)
The aim of this study is to illustrate the importance of farm scale heterogeneity on nitrogen (N) losses in agricultural landscapes. Results are exemplified with a chain of N models calculating farm-N balances and distributing the N-surplus to N-losses (volatilisation, denitrification, leaching) and soil-N accumulation/release in a Danish landscape.(More)