Tzyy-Ping Jung

Learn More
Because of the distance between the skull and brain and their different resistivities, electroencephalographic (EEG) data collected from any point on the human scalp includes activity generated within a large brain area. This spatial smearing of EEG data by volume conduction does not involve significant time delays, however, suggesting that the Independent(More)
Scalp-recorded electroencephalographic (EEG) signals produced by partial synchronization of cortical field activity mix locally synchronous electrical activities of many cortical areas. Analysis of event-related EEG signals typically assumes that poststimulus potentials emerge out of a flat baseline. Signals associated with a particular type of cognitive(More)
The analysis of electroencephalographic (EEG) and magnetoencephalographic (MEG) recordings is important both for basic brain research and for medical diagnosis and treatment. Independent component analysis (ICA) is an effective method for removing artifacts and separating sources of the brain signals from these recordings. A similar approach is proving(More)
Ongoing brain activity can be recorded as electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study applied machine-learning algorithms to categorize EEG dynamics according to subject self-reported emotional states during music listening. A framework was proposed to optimize EEG-based emotion recognition by(More)
Preventing accidents caused by drowsiness has become a major focus of active safety driving in recent years. It requires an optimal technique to continuously detect drivers’ cognitive state related to abilities in perception, recognition, and vehicle control in (near-) real-time. The major challenges in developing such a system include: 1) the lack of(More)
Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a wireless body area network with low energy consumption for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing/reconstructing data with low energy consumption. However, due(More)
Pervasive electroencephalographic (EEG) artifacts associated with blinks, eye-movements, muscle noise, cardiac signals , and line noise poses a major challenge for EEG interpretation and analysis. Here, we propose a generally applicable method for removing a wide variety of artifacts from EEG records based on an extended version of an Independent Component(More)
Recent demand and interest in wireless, mobile-based healthcare has driven significant interest towards developing alternative biopotential electrodes for patient physiological monitoring. The conventional wet adhesive Ag/AgCl electrodes used almost universally in clinical applications today provide an excellent signal but are cumbersome and irritating for(More)
Most current analysis methods for fMRI data assume a priori knowledge of the time course of the hemodynamic response (HR) to experimental stimuli or events in brain areas of interest. In addition, they typically assume homogeneity of both the HR and the non-HR "noise" signals, both across brain regions and across similar experimental events. When HRs vary(More)
Telemonitoring of electroencephalogram (EEG) through wireless body-area networks is an evolving direction in personalized medicine. Among various constraints in designing such a system, three important constraints are energy consumption, data compression, and device cost. Conventional data compression methodologies, although effective in data compression,(More)