Learn More
Central glutamate neurotransmission has been postulated to play a role in pathophysiology of depression and in the mechanism of antidepressants. The present study was undertaken to elucidate the effect and the possible mechanism of bupropion, an atypical antidepressant, on endogenous glutamate release in nerve terminals of rat cerebral cortex(More)
The citrus flavonoid hesperidin exerts neuroprotective effects and could cross the blood-brain barrier. Given the involvement of glutamate neurotoxicity in the pathogenesis of neurodegenerative disorders, this study was conducted to evaluate the potential role of hesperidin in glutamate release and glutamate neurotoxicity in the hippocampus of rats. In rat(More)
Curcumin, one of the major constituents of Curcuma longa, has been shown to inhibit depolarization-evoked glutamate release from rat prefrontocortical nerve terminals by reducing voltage-dependent Ca(2+) entry. This study showed that curcumin inhibited ionomycin-induced glutamate release and KCl-evoked FM1-43 release, suggesting that some steps after Ca(2+)(More)
The glutamatergic system may be involved in the effects of neuroprotectant therapies. Echinacoside, a phenylethanoid glycoside extracted from the medicinal Chinese herb Herba Cistanche, has neuroprotective effects. This study investigated the effects of echinacoside on 4-aminopyridine-evoked glutamate release in rat cerebrocortical nerve terminals(More)
Glutamatergic excitotoxicity is crucial in the pathogenesis of numerous brain disorders. Luteolin, a flavonoid compound, inhibits glutamate release, however, its ability to affect glutamate-induced brain injury is unknown. Therefore, this study evaluated the protective effect of luteolin against brain damage induced by kainic acid (KA), a glutamate analog.(More)
Osthole, an active constituent isolated from Cnidium monnieri (L.) Cusson, has previously been shown to have the capacity to increase depolarization-evoked glutamate release in rat hippocampal nerve terminals. As cGMP-dependent signaling cascade has been found to modulate glutamate release at the presynaptic level, the aim of this study was to further(More)
This study investigated the effects and possible mechanism of ferulic acid, a naturally occurring phenolic compound, on endogenous glutamate release in the nerve terminals of the cerebral cortex in rats. Results show that ferulic acid inhibited the release of glutamate evoked by the K⁺ channel blocker 4-aminopyridine (4-AP). The effect of ferulic acid on(More)
The purpose of this study was to examine the effect and mechanism of apigenin, a natural flavonoid, on glutamate release in the rat hippocampus. In rat hippocampal nerve terminals (synaptosomes), apigenin inhibited glutamate release and the elevation of the cytosolic free Ca(2+) concentration evoked by 4-aminopyridine, whereas it had no effect on(More)
Interest in the health benefits of flavonoids, particularly their effects on neurodegenerative disease, is increasing. This study evaluated the role of baicalein, a flavonoid compound isolated from the traditional Chinese medicine Scutellaria baicalensis, in glutamate release and glutamate neurotoxicity in the rat hippocampus. In the rat hippocampal nerve(More)
The purpose of this study was to examine the effect and mechanism of astaxanthin, a natural carotenoid, on endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes). Results showed that astaxanthin exhibited a dose-dependent inhibition of 4-aminopyridine (4-AP)-evoked release of glutamate. The effect of astaxanthin on the evoked(More)