Tzu-Ting Hsu

Learn More
Epithelial-mesenchymal transition (EMT) plays an important role in organ fibrosis, including that of the kidney. Loss of E-cadherin expression is a hallmark of EMT; however, whether the loss of E-cadherin is a consequence or a cause of EMT remains unknown, especially in the renal system. In this study, we show that transforming growth factor(More)
As a rich source of pro-fibrogenic growth factors and matrix metalloproteinases (MMPs), macrophages are well-placed to play an important role in renal fibrosis. However, the exact underlying mechanisms and the extent of macrophage involvement are unclear. Tubular cell epithelial-mesenchymal transition (EMT) is an important contributor to renal fibrosis and(More)
While the significance of natural Ab is not entirely clear, one proposed role is clearance of bacterial Ags. To determine whether natural Ab was involved in clearance of endotoxin, we have examined novel strains of mice with either a total or selective deficiency in Ig. Recombinase-activating gene-2 (RAG-2(-/-))-deficient mice, which have no serum Ig due to(More)
A pro-fibrotic role of matrix metalloproteinase-9 (MMP-9) in tubular cell epithelial-mesenchymal transition (EMT) is well established in renal fibrosis; however studies from our group and others have demonstrated some previously unrecognized complexity of MMP-9 that has been overlooked in renal fibrosis. Therefore, the aim of this study was to determine the(More)
Loss of E-cadherin marks a defect in epithelial integrity and polarity during tissue injury and fibrosis. Whether loss of E-cadherin plays a causal role in fibrosis is uncertain. α3β1 Integrin has been identified to complex with E-cadherin in cell-cell adhesion, but little is known about the details of their cross talk. Herein, E-cadherin gene (Cdh1) was(More)
  • 1