Tzu-Shiang Lin

Learn More
For mission-critical applications of wireless sensor networks (WSNs) involving extensive battlefield surveillance, medical healthcare, etc., it is crucial to have low-power, new protocols, methodologies and structures for transferring data and information in a network with full sensing coverage capability for an extended working period. The upmost mission(More)
Deployment of wireless sensor networks (WSNs) has drawn much attention in recent years. Given the limited energy for sensor nodes, it is critical to implement WSNs with energy efficiency designs. Sensing coverage in networks, on the other hand, may degrade gradually over time after WSNs are activated. For mission-critical applications, therefore,(More)
Air pollution is one of environmental issues that cannot be ignored. The heavy transportation and urbanization result in the air pollutants concentrated in certain areas. Inhaling pollutants for a long time causes damages in human health. Traditional air quality monitoring methods, such as building air quality monitoring stations, are typically expensive.(More)
In recent years, various received signal strength (RSS)-based localization estimation approaches for wireless sensor networks (WSNs) have been proposed. RSS-based localization is regarded as a low-cost solution for many location-aware applications in WSNs. In previous studies, the radiation patterns of all sensor nodes are assumed to be spherical, which is(More)
Improving fruit farm profitability through integrated pest management (IPM) programs is always an important issue to modern agriculture systems. In order to enhance IPM programs against Bactrocera dorsalis, an automatic infield monitoring system is required to efficiently capture long-term and up-to-the-minute environmental fluctuations in a fruit farm. In(More)
One of the critical concerns in wireless sensor networks (WSNs) is the continuous maintenance of sensing coverage. Many particular applications, such as battlefield intrusion detection and object tracking, require a full-coverage at any time, which is typically resolved by adding redundant sensor nodes. With abundant energy, previous studies suggested that(More)