Tzu-Pin Wang

Learn More
Fet3p is a multicopper oxidase that contains four Cu ions: one type 1, one type 2, and a coupled binuclear type 3 site. The type 2 and type 3 centers form a trinuclear cluster that is the active site for O(2) reduction to H(2)O. When the type 1 Cu is depleted (C484S mutation), the reaction of the reduced trinuclear cluster with O(2) generates a peroxide(More)
BACKGROUND/PURPOSE The early diagnosis and appropriate management of spinal tuberculosis (TB) is challenging for clinicians. This study aimed to characterize the clinical features and factors affecting treatment outcomes. METHODS A retrospective study of patients with spinal TB over a 7-year period at a medical center in southern Taiwan was conducted.(More)
Fet3p is a multicopper oxidase that uses four copper ions (one type 1, one type 2, and one type 3 binuclear site) to couple substrate oxidation to the reduction of O(2) to H(2)O. The type 1 Cu site shuttles electrons between the substrate and the type 2/type 3 Cu sites which form a trinuclear Cu cluster that is the active site for O(2) reduction. This study(More)
Chemical conjugations of nucleic acids with macromolecules or small molecules are common approaches to study nucleic acids in chemistry and biology and to exploit nucleic acids for medical applications. The conjugation of nucleic acids such as oligonucleotides with peptides is especially useful to circumvent cell delivery and specificity problems of(More)
The multicopper oxidases are a family of enzymes that couple the reduction of O(2) to H(2)O with the oxidation of a range of substrates. Saccharomyces cerevisiae Fet3p and human ceruloplasmin (hCp) are members of this family that exhibit ferroxidase activity. Their high specificity for Fe(II) has been attributed to the existence of a binding site for iron.(More)
BACKGROUND/PURPOSE Stenotrophomonas maltophilia has been recognized as an important nosocomial pathogen, but few reports have discussed S. maltophilia infection in the community settings. This study aimed to reveal characteristics of patients with community-onset S. maltophilia bloodstream infection (SMBSI), to specify the subgroup of healthcare-associated(More)
Peptide-oligonucleotide conjugates (POCs) have held promise as effective therapeutic agents in treating microbial infections and human genetic diseases including cancers. In clinical applications, POCs are especially useful to circumvent cellular delivery and specificity problems of oligonucleotides. We previously reported that nucleic acid(More)
Here we present the in vitro selection of a novel ribozyme specific for Zn2+-dependent catalysis on hydrolysis of a phosphorothiolate thiolester bond. The ribozyme, called the TW17 ribozyme, was evolved and selected from an artificial RNA pool covalently linked to a biotin-containing substrate through the phosphorothiolate thiolester bond. The secondary(More)
The Fet3 protein in Saccharomyces cerevisiae is a multicopper oxidase tethered to the outer surface of the yeast plasma membrane. Fet3p catalyzes the oxidation of Fe2+ to Fe3+; this ferroxidation reaction is an obligatory first step in high-affinity iron uptake through the permease Ftr1p. Here, kinetic analyses of several Fet3p mutants identify residues(More)
The regioselective post-synthetic modifications of nucleic acids are essential to studies of these molecules for science and applications. Here we report a facile universal approach by harnessing versatile phosphoramidation reactions to regioselectively incorporate alkynyl/azido groups into post-synthetic nucleic acids primed with phosphate at the 5'(More)