Learn More
High-dynamic range (HDR) images are commonly used in computer graphics for accurate rendering. However, it is inefficient to store these images because of their large data size. Although vector quantization approach can be used to compress them, a large number of representative colors are still needed to preserve acceptable image quality. This paper(More)
This paper proposes a novel multiscale spherical radial basis function (MSRBF) representation for all-frequency lighting. It supports the illumination of distant environment as well as the local illumination commonly used in practical applications, such as games. The key is to define a multiscale and hierarchical structure of spherical radial basis(More)
Cube mapping is widely used in many graphics applications due to the availability of hardware support. However, it does not sample the spherical surface evenly. Recently, a uniform spherical mapping, isocube mapping, was proposed. It exploits the six-face structure used in cube mapping and samples the spherical surface evenly. Unfortunately, some texels in(More)
Many existing pre-computed radiance transfer (PRT) approaches for all-frequency lighting store the information of a 3D object in the pre-vertex manner. To preserve the fidelity of high frequency effects, the 3D object must be tessellated densely. Otherwise, rendering artifacts due to interpolation may appear. This paper presents an all-frequency lighting(More)
An illumination adjustable image (IAI), containing a set of pre-captured reference images under various light directions, represents the appearance of a scene with adjustable illumination. One of drawbacks of using the IAI representation is that an IAI consumes a lot of memory. Although some previous works proposed to use blockwise principal component(More)
An illumination adjustable image (IAI) contains a large number of prerecorded images under various light directions. Relighting a scene under complicated lighting conditions can be achieved from the IAI. Using the radial basis function (RBF) approach to represent an IAI is proven to be more efficient than using the spherical harmonic approach. However, to(More)