Tyrone L. Vincent

Learn More
ÐA method is developed to analyze the accuracy of the relative head-to-object position and orientation (pose) in augmented reality systems with head-mounted displays. From probabilistic estimates of the errors in optical tracking sensors, the uncertainty in head-to-object pose can be computed in the form of a covariance matrix. The positional uncertainty(More)
Recovering or estimating the initial state of a highdimensional system can require a potentially large number of measurements. In this paper, we explain how this burden can be significantly reduced for certain linear systems when randomized measurement operators are employed. Our work builds upon recent results from the field of Compressive Sensing (CS), in(More)
The thermal storage potential of Thermostatically Controlled Loads (TCLs) is a tremendous flexible resource for providing various ancillary services to the grid. In this work, we study aggregate modeling, characterization, and control of TCLs for frequency regulation service provision. We propose a generalized battery model for aggregating flexibility of a(More)
In augmented reality (AR) systems using headmounted displays (HMD's), it is important to accurately sense the position and orientation (pose) of the user's head with respect to the world, in order that graphical overlays are drawn correctly aligned with real world objects. It is desired to maintain registration dynamically (while the person is moving their(More)
In this paper, we consider topology identification of large-scale interconnected dynamical systems. The system topology under study has the structure of a directed graph. Each edge of the directed network graph represents a Finite Impulse Response (FIR) filter with a possible transport delay. Each node is a summer, whose inputs are the signals from the(More)
In this paperwe consider a unified framework for parameter estimation problems. Under this framework, the unknown parameters appear in a linear fractional transformation (LFT). A key advantage of the LFT problem formulation is that it allows us to efficiently compute gradients, Hessians, and Gauss–Newton directions for general parameter estimation problems(More)
Thermostatically Controlled Loads (TCLs) such as air conditioners, heat pumps, water heaters and refrigerators have a great potential for providing regulation reserve to the grid. This paper aims to provide a foundation for a practical method of enabling TCLs to provide regulation service. We study the economic, regulatory, and practical aspects to realize(More)
Catalytic reforming of biogas for use in a solid oxide fuel cell is a promising method of stationary fuel cell power generation. Potential challenges include the variable composition of input biogas and the resulting effects on the lifetime of the catalytic reactor. Environmental factors cause variability in the produced biogas stream which requires either(More)