Learn More
A novel nanoparticle-based drug carrier for photodynamic therapy is reported which can provide stable aqueous dispersion of hydrophobic photosensitizers, yet preserve the key step of photogeneration of singlet oxygen, necessary for photodynamic action. A multidisciplinary approach is utilized which involves (i) nanochemistry in micellar cavity to produce(More)
We report a novel nanoformulation of a photosensitizer (PS), for photodynamic therapy (PDT) of cancer, where the PS molecules are covalently incorporated into organically modified silica (ORMOSIL) nanoparticles. We found that the covalently incorporated PS molecules retained their spectroscopic and functional properties and could robustly generate cytotoxic(More)
A new approach for photoluminescence imaging in vitro and in vivo has been shown utilizing near infrared to near infrared (NIR-to-NIR) up-conversion in nanophosphors. This NIR-to-NIR up-conversion process provides deeper light penetration into biological specimen and results in high contrast optical imaging due to absence of an autofluorescence background(More)
We report energy-transferring organically modified silica nanoparticles for two-photon photodynamic therapy. These nanoparticles co-encapsulate two-photon fluorescent dye nanoaggregates as an energy up-converting donor and a photosensitizing PDT drug as an acceptor. They combine two features: (i) aggregation-enhanced two-photon absorption and emission(More)
Water soluble porphyrins were designed and prepared by Williamson ether synthesis reaction between tetrakis(p-bromomethylphenyl)porphyrin and polyethylene glycol (PEG) for photodynamic therapy. The quantum yields for the generation of singlet oxygen of tetra-polyethylene glycol branched porphyrin shows above 80% in D2O. Luminescence of singlet state oxygen(More)
This article reports a multidisciplinary approach to produce fluorescently labeled organically modified silica nanoparticles as a nonviral vector for gene delivery and biophotonics methods to optically monitor intracellular trafficking and gene transfection. Highly monodispersed, stable aqueous suspensions of organically modified silica nanoparticles,(More)
In this paper we report the synthesis and characterization of organically modified silica (ORMOSIL) nanoparticles, covalently incorporating the fluorophore rhodamine-B, and surface-functionalized with a variety of active groups. The synthesized nanoparticles are of ultralow size (diameter approximately 20 nm), highly monodispersed, stable in aqueous(More)
A carrier-free method for delivery of a hydrophobic drug in its pure form, using nanocrystals (nanosized crystals), is proposed. To demonstrate this technique, nanocrystals of a hydrophobic photosensitizing anticancer drug, 2-devinyl-2-(1-hexyloxyethyl)pyropheophorbide (HPPH), have been synthesized using the reprecipitation method. The resulting drug(More)
A method is presented for the preparation of a biocompatible ferrofluid containing dye-functionalized magnetite nanoparticles that can serve as fluorescent markers. This method entails the surface functionalization of magnetite nanoparticles using citric acid to produce a stable aqueous dispersion and the subsequent binding of fluorescent dyes to the(More)
We report the design, synthesis using nanochemistry, and characterization of a novel multifunctional polymeric micelle-based nanocarrier system, which demonstrates combined function of magnetophoretically guided drug delivery together with light-activated photodynamic therapy. Specifically, the nanocarrier consists of polymeric micelles of(More)