Learn More
A role for the Mut L homologue-1 (MLH1) protein, a necessary component of DNA mismatch repair (MMR), in G2-M cell cycle checkpoint arrest after 6-thioguanine (6-TG) exposure was suggested previously. A potential role for MLH1 in G1 arrest and/or G1-S transition after damage was, however, not discounted. We report that MLH1-deficient human colon carcinoma(More)
Mismatch repair (MMR) deficiency, which underlies hereditary nonpolyposis colorectal cancer, has recently been linked to a number of sporadic human cancers as well. Deficiency in this repair process renders cells resistant to many clinically active chemotherapy agents. As a result, it is of relevance to find an agent that selectively targets MMR-deficient(More)
Hereditary nonpolyposis colorectal cancer is a cancer susceptibility syndrome that has been found to be caused by mutations in any of several genes involved in DNA mismatch repair, including hMSH2, hMLH1, or hPMS2. Recent reports have suggested that hMSH2 and hMLH1 have a role in the regulation of the cell cycle. To determine if these genes are cell cycle(More)
ASWP testbed, a long-term wireless sensor network (WSN) deployment for environmental monitoring, is presented. This testbed integrates 42 MICAz nodes that implement a periodic sampling application for external sensors exposed to a forested nature reserve at the Audubon Society of Western Pennsylvania (ASWP), USA. It has been running for the past two years(More)
This paper explores the network performance and costs associated with the deployment, labor, and maintenance of a long-term outdoor multi-hop wireless sensor network (WSN) located at the Audubon Society of Western Pennsylvania (ASWP), which has been in operation for more than four years for environmental data collection. The WSN performance is studied over(More)
This is an investigation of Wireless Sensor Networks (WSNs) using Memsic's XMesh routing protocol on MICAz wireless motes. It focuses on the study of the practical aspects of WSNs' power efficiency and network characteristics, which play a critical role in real-word WSN deployments for environmental monitoring. Based on an experimental study and following a(More)
This work provides a design for two types of sensors, based on the thermal dissipation and heat ratio methods of sap flow calculation, for moderate to large scale deployments for the purpose of monitoring tree transpiration. These designs include a procedure for making these sensors, a quality control method for the final products, and a complete list of(More)
A novel experimental approach is developed for characterizing the performance of heat pipe wick structures. This approach simulates the actual operation of wick structures in a heat pipe. Open, partially submerged, sintered copper wicks of varying pore size are studied under the partially saturated conditions found in normal heat pipe operation. A vertical(More)
A novel system is developed for measuring the thermal resistance across thin layers of sintered copper wicks of varying porosity. Wicks to be tested are integrated into a passive vertical thermosyphon system and the resistance is measured for a series of input power levels. The wicks are sintered to a thermally conducting pedestal above a pool of de-ionized(More)