Tyler L. Westover

Learn More
Terrestrial lignocellulosic biomass has the potential to be a carbon neutral and domestic source of fuels and chemicals. However, the innate variability of biomass resources, such as herbaceous and woody materials, and the inconsistency within a single resource due to disparate growth and harvesting conditions, presents challenges for downstream processes(More)
Thermal transport and breakdown in Joule-heated GaN nanowires is investigated using a combination of microphotoluminescence and in situ TEM characterization. The thermal conductivity of the nanowires is estimated to be <80 W/m.K, which is substantially below the bulk GaN value. Catastrophic breakdown in individual nanowires is observed to occur at a maximum(More)
An improved method for the metallization of DNA origami is examined in this work. DNA origami, a simple and robust method for creating a wide variety of nanostructured shapes and patterns, provides an enabling template for bottom-up fabrication of next-generation nanodevices. Selective metallization of these DNA templates is needed to make nanoelectronic(More)
Direct reaction of herringbone, platelet, or narrow, tubular herringbone graphitic carbon nanofibers (GCNFs) with molten potassium gives K/GCNF intercalates with stoichiometric control of potassium loading. Intercalate formation is confirmed by powder X-ray diffraction and micro-Raman spectroscopy. K/GCNF intercalates act as radical-anion alkene(More)
The steady-state temperature distribution in a thin anode bombarded by an electron beam field emitted from an individual multiwalled carbon nanotube is measured with an infrared camera, and this distribution is compared to that predicted by a numerical model. By assuming the electron distribution in the beam follows a Gaussian distribution, a good fit to(More)
Inorganic species (ash) in biomass feedstocks negatively impact thermochemical and biochemical energy conversion processes. In this work, a process simulation model is developed to model the reduction in ash content of loblolly logging residues using a combination of air classification and dilute-acid leaching. Various scenarios are considered, and it is(More)
Inorganic compounds in biomass, often referred to as ash, are known to be problematic in the thermochemical conversion of biomass to bio-oil or syngas and, ultimately, hydrocarbon fuels because they negatively influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. The most common ash-analysis methods,(More)