Tyler E Miller

Learn More
We explored the role of microRNAs (miRNAs) in acquiring resistance to tamoxifen, a drug successfully used to treat women with estrogen receptor-positive breast cancer. miRNA microarray analysis of MCF-7 cell lines that are either sensitive (parental) or resistant (4-hydroxytamoxifen-resistant (OHT(R))) to tamoxifen showed significant (>1.8-fold)(More)
Bread wheat is a hexaploid (AABBDD, 2n=6x=42) containing three related ancestral genomes, each having 7 chromosomes, giving 42 chromosomes in diploid cells. During meiosis true homologues are correctly associated in wild-type wheat, but a degree of association of related chromosomes (homoeologues) occurs in a mutant (ph1b). We show that the centromeres are(More)
Multiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells(More)
We have shown earlier that miR-221 and -222 are up-regulated in tamoxifen-resistant MCF-7 (OHT(R)) cells and Her2-positive human breast tumors when compared with Her2 negative tumors. In this study, we report markedly enhanced expression of miR-181b in OHT(R) cells and endocrine-resistant tumors. Further, anti-miR-222 or -181b in combination with tamoxifen(More)
Glioblastoma (GBM) is the most prevalent primary brain tumor and ranks among the most lethal of human cancers with conventional therapy offering only palliation. Great strides have been made in understanding brain cancer genetics and modeling these tumors with new targeted therapies being tested, but these advances have not translated into substantially(More)
Six wheat lines with recombination between Aegilops uniaristata chromosome 3N and wheat chromosome 3A were produced. These were characterized in terms of exchange points by RFLP analysis. Chromosome 3N carries an undesirable brittle rachis gene and three of the recombinant lines had lost this character. The results also support previously published evidence(More)
The cloning of genes for complex traits in polyploid plants that possess large genomes, such as hexaploid wheat, requires an efficient strategy. We present here one such strategy focusing on the homologous pairing suppressor (Ph1) locus of wheat. This locus has been shown to affect both premeiotic and meiotic processes, possibly suggesting a complex(More)
This study characterizes a transgenic animal model for the troponin T (TnT) mutation (I79N) associated with familial hypertrophic cardiomyopathy. To study the functional consequences of this mutation, we examined a wild type and two I79N-transgenic mouse lines of human cardiac TnT driven by a murine alpha-myosin heavy chain promoter. Extensive(More)
Glioblastoma, the most common and aggressive malignant brain tumor, is propagated by stem-like cancer cells refractory to existing therapies. Understanding the molecular mechanisms that control glioblastoma stem cell (GSC) proliferation and drug resistance may reveal opportunities for therapeutic interventions. Here we show that GSCs can reversibly(More)
Despite functional significance of nonmuscle myosin II in cell migration and invasion, its role in epithelial-mesenchymal transition (EMT) or TGF-β signaling is unknown. Analysis of normal mammary gland expression revealed that myosin IIC is expressed in luminal cells, whereas myosin IIB expression is up-regulated in myoepithelial cells that have more(More)