Learn More
The activity-dependent removal of AMPA receptors from synapses underlies long-term depression in hippocampal excitatory synapses. In this study, we have investigated the role of the small GTPase Rab5 during this process. We propose that Rab5 is a critical link between the signaling cascades triggered by LTD induction and the machinery that executes the(More)
The regulated trafficking of neurotransmitter receptors at synapses is critical for synaptic function and plasticity. However, the molecular machinery that controls active transport of receptors into synapses is largely unknown. We found that, in rat hippocampus, the insertion of AMPA receptors (AMPARs) into spines during synaptic plasticity requires a(More)
The strength of excitatory synaptic transmission depends partly on the number of AMPA receptors (AMPARs) at the postsynaptic surface and, thus, can be modulated by membrane trafficking events. These processes are critical for some forms of synaptic plasticity, such as long-term potentiation and long-term depression (LTD). In the case of LTD, AMPARs are(More)
Endosomal membrane trafficking in dendritic spines is important for proper synaptic function and plasticity. However, little is known about the molecular identity and functional compartmentalization of the membrane trafficking machinery operating at the postsynaptic terminal. Here we report that the transport of AMPA-type glutamate receptors into synapses(More)
Members of the Rab family of small GTPases are essential regulators of intracellular membrane sorting. Nevertheless, very little is known about the role of these proteins in the membrane trafficking processes that operate at synapses, and specifically, at postsynaptic terminals. These events include the activity-dependent exocytic and endocytic trafficking(More)