Tycho L. van Noorden

Learn More
In this paper, a new variant of the Jacobi-Davidson method is presented that is specifically designed for real unsymmetric matrix pencils. Whenever a pencil has a complex conjugated pair of eigenvalues, the method computes the two dimensional real invariant subspace spanned by the two corresponding complex conjugated eigenvectors. This is beneficial for(More)
In this note we continue the analysis of the pore-scale model for crystal dissolution and precipitation in porous media proposed in [C. J. van Duijn and I. S. Pop, Crystal dissolution and precipitation in porous media: pore scale analysis, J. Reine Angew. Math. 577 (2004), 171–211]. There the existence of weak solutions was shown. We prove an L1-contraction(More)
In this paper we present an efficient branch-following procedure that can be used not only to compute branches of periodic solutions of periodically forced dynamical systems but also to determine the stability of the periodic solutions. The procedure combines Broyden’s method with a subspace iteration method to determine the dominant eigenvalues. The method(More)
We investigate a two-dimensional micro-scale model for crystal dissolution and precipitation in a porous medium. The model contains a free boundary and allows for changes in the pore volume. Using a level-set formulation of the free boundary, we apply a formal homogenization procedure to obtain upscaled equations. For general micro-scale geometries, the(More)
We consider a pore-scale model for reactive flow in a thin 2-D strip, where the convective transport dominates the diffusion. Reactions take place at the lateral boundaries of the strip (the walls), where the reaction product can deposit in a layer with a non-negligible thickness compared to the width of the strip. This leads to a free boundary problem, in(More)
The generation by renewables and the loading by electrical vehicle charging imposes severe challenges in the redesign of today’s power supply systems. Indeed, accommodating these emerging power sources and sinks requires traditional power systems to evolve from rigid centralized unidirectional architectures to intelligent decentralized entities allowing a(More)
The generation by renewables and the loading by electrical vehicle charging imposes severe challenges in the redesign of today’s power supply systems. Indeed, accommodating these emerging power sources and sinks requires traditional power systems to evolve from rigid centralized unidirectional architectures to intelligent decentralized entities allowing a(More)