Tycho I. G. van der Spoel

Learn More
AIMS Stem cell therapy is a treatment strategy for ischaemic heart disease patients. Meta-analysis of randomized human trials showed <5% improvement in left ventricular ejection fraction (LVEF). Meta-analysis of available pre-clinical data of ischaemic heart disease could provide important clues to design human clinical trials. METHODS AND RESULTS(More)
RATIONALE Mesenchymal precursor cells (MPCs) are a specific Stro-3+ subpopulation of mesenchymal stem cells isolated from bone marrow. MPCs exert extensive cardioprotective effects, and are considered to be immune privileged. OBJECTIVE This study assessed the safety, feasibility, and efficacy of intracoronary delivery of allogeneic MPCs directly after(More)
BACKGROUND Intramyocardial cell injections in the context of cardiac regenerative therapy can currently be performed using electromechanical mapping (EMM) provided by the NOGA®XP catheter injection system. The gold standard technique to determine infarct size and location, however, is late gadolinium enhanced magnetic resonance imaging (LGE-MRI). In this(More)
Stem cell therapy is a new strategy for chronic ischaemic heart disease in patients. However, no consensus exists on the most optimal delivery strategy. This randomized study was designed to assess cell delivery efficiency of three clinically relevant strategies: intracoronary (IC) and transendocardial (TE) using electromechanical mapping guidance (NOGA)(More)
Cardiac cell therapy is a strategy to treat patients with chronic myocardial infarction (MI). No consensus exists regarding the optimal cell type. First, a comparison between autologous bone marrow-derived mononuclear cells (BMMNC) and mesenchymal stem cells (MSC) on therapeutic efficacy after MI was performed. Next, the effect of repetitive, NOGA-guided(More)
BACKGROUND In rodents, it has previously been shown that necrostatin-1 (Nec-1) inhibits RIP1, a central regulator of programmed necrosis, thereby decreasing cell death and reducing infarct size (IS) after ischaemia/reperfusion (I/R) injury. To address unanswered questions on feasibility and efficacy of Nec-1 in a large animal model, we assessed the effects(More)
Cardiovascular disease is one of the leading causes of morbidity and mortality around the world. Even after successful revascularization in coronary artery disease, cell death continues and the loss of cardiomyocytes eventually leads to progressive ventricular dilation and heart dysfunction. The notion of repairing or regenerating lost myocardium via(More)
Heart failure is a major economic and public health problem. Despite the recent advances in drug therapy and coronary revascularization, the lost cardiomyocytes due to necrosis and apoptosis are not replaced by new myocardial tissue. Cell therapy is an interesting therapeutic option as it potentially improves contractility and restores regional ventricular(More)
Pre-clinical studies aimed at treating ischemic heart disease (i.e. stem cell- and growth factor therapy) often consider restoration of the impaired microvascular circulation as an important treatment goal. However, serial in vivo measurement hereof is often lacking. The purpose of this study was to evaluate the applicability of intracoronary pressure and(More)
Local layer-specific myocardial deformation after myocardial infarction (MI) has not been studied extensively although the sub-endocardium is more vulnerable to ischemia and interstitial fibrosis deposition. Radiofrequency (RF) ultrasound-based analysis could provide superior layer-specific radial strain estimation compared with clinically available(More)