Learn More
Litter size is an important reproductive trait as it makes a major contribution to fitness. Generally, traits closely related to fitness show low heritability perhaps because of the corrosive effects of directional natural selection on the additive genetic variance. Nonetheless, low heritability does not imply, necessarily, a complete absence of genetic(More)
The genetic basis of variation in obesity in human populations is thought to be owing to many genes of relatively small effect and their interactions. The LG/J by SM/J intercross of mouse inbred strains provides an excellent model system in which to investigate multigenic obesity. We previously mapped a large number of quantitative trait loci (QTLs)(More)
The evolution of morphological modularity through the sequestration of pleiotropy to sets of functionally and developmentally related traits requires genetic variation in the relationships between traits. Genetic variation in relationships between traits can result from differential epistasis, where epistatic relationships for pairs of loci are different(More)
The "large" (LG/J) and "small" (SM/J) inbred mouse strains differ for a wide variety of traits related to body size and obesity. Ninety-three LG/J and SM/J mice were divided into two treatment categories and fed a moderately high-fat diet (21% kcal fat) or a low-fat diet (12% kcal fat) from weaning to necropsy. Strain differences in obesity-related traits(More)
  • 1