Tuula M. Jyske

Learn More
Phloem production and structural development were interlinked with seasonal variation in the primary and secondary metabolites of phloem. Novel microtechniques provided new perspectives on understanding phloem structure and chemistry. To gain new insights into phloem formation in Norway spruce (Picea abies), we monitored phloem cell production and seasonal(More)
We studied the intra-annual wood formation in a Norway spruce provenance experiment in southern Finland from 2004–2008. Two Finnish provenances, northern and southern, as well as German and Hungarian provenances were included. Timing of tracheid formation and differentiation, and tracheid dimensions were determined from periodically extracted microcores.(More)
We studied the effects of artificial soil frost on cambial activity and xylem formation on 47-year-old Norway spruce [Picea abies (L.) Karst.] trees grown on medium fertile site type (with moraine soil) in eastern Finland (62°42′N; 29°45′E). Different soil frost treatments applied were: (1) natural snow accumulation and melting (control, CTRL); (2)(More)
Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems(More)
  • 1