Tushar Kumeria

Learn More
Herein, we present an innovative approach to monitoring in situ drug release under dynamic flow conditions from aluminum implants featuring nanoporous anodic alumina (NAA) covers used as a model of drug-releasing implants. In this method, reflectometric interference spectroscopy (RIfS) is used to monitor in real-time the diffusion of drug from these(More)
Naturally produced iron oxide nanowires by Mariprofundus ferrooxydans bacteria as biofilm are evaluated for their structural, chemical, and photocatalytic performance under visible-light irradiation. The crystal phase structure of this unique natural material presents a 1-dimensional (1D) nanowire-like geometry, which is transformed from amorphous to(More)
Here, we report on the development of advanced biopolymer-coated drug-releasing implants based on titanium (Ti) featuring titania nanotubes (TNTs) on its surface. These TNT arrays were fabricated on the Ti surface by electrochemical anodization, followed by the loading and release of a model antibiotic drug, gentamicin. The osteoblastic adhesion and(More)
In this report, a label-free reflectometric interference spectroscopy (RIfS) based microchip biosensor for the detection of circulating tumour cells (CTCs) is demonstrated. Highly ordered nanoporous anodic aluminium oxide (AAO) fabricated by electrochemical anodization of aluminium foil was used as the RIfS sensing platform. Biotinylated anti-EpCAM antibody(More)
Nanoporous anodic alumina (NAA) has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a(More)
Iron oxide nanowires produced by bacteria (Mariprofundus ferrooxydans) are demonstrated as new multifunctional drug carriers for triggered therapeutics release and cancer hyperthmia applications. Iron oxide nanowires are obtained from biofilm waste in the bore system used to pump saline groundwater into the River Murray, South Australia (Australia) and(More)
In this study, we produce for the first time biomimetic films and microsized particles based on nanoporous anodic alumina distributed Bragg reflectors (NAA-DBRs) by a rational galvanostatic pulse-anodization approach. These biomimetic photonic structures can feature a broad range of vivid bright colors, which can be tuned across the UV-visible spectrum by(More)
In this study, we report about the structural engineering and optical optimization of nanoporous anodic alumina rugate filters (NAA-RFs) for real-time and label-free biosensing applications. Structurally engineered NAA-RFs are combined with reflection spectroscopy (RfS) in order to develop a biosensing system based on the position shift of the(More)
Herein, we present a comparative study about the sensing performance of optical biosensors based on photoluminescence spectroscopy (PLS) and reflectometric interference spectroscopy (RIfS) combined with nanoporous anodic alumina (NAA) platforms when detecting different analytes under distinct adsorption conditions. First, NAA platforms are structurally(More)
3-Dimensional (3D) composites based on a unique combination of MnO2-nanostructures, graphene oxide nanosheets and porous Diatomaceous Earth (DE) microparticles (GO-DE@MnO2) were synthesized and explored for application in high-performance supercapacitors. To explore the influence of the structural properties of MnO2 nanostructures on supercapacitor(More)