Tuomas Tammela

Learn More
Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is a key process in several pathological conditions, including tumour growth and age-related macular degeneration. Vascular endothelial growth factors (VEGFs) stimulate angiogenesis and lymphangiogenesis by activating VEGF receptor (VEGFR) tyrosine kinases in endothelial cells.(More)
The lymphatic vasculature forms a vessel network that drains interstitial fluid from tissues and returns it to the blood. Lymphatic vessels are also an essential part of the body's immune defence. They have an important role in the pathogenesis of several diseases, such as cancer, lymphoedema and various inflammatory conditions. Recent biological and(More)
The discovery of the vascular endothelial growth factor (VEGF) family members VEGF, VEGF-B, placental growth factor (PlGF), VEGF-C and VEGF-D and their receptors VEGFR-1, -2 and -3 has provided tools for studying the vascular system in development as well as in diseases ranging from ischemic heart disease to cancer. VEGF has been established as the prime(More)
Edema occurs in asthma and other inflammatory diseases when the rate of plasma leakage from blood vessels exceeds the drainage through lymphatic vessels and other routes. It is unclear to what extent lymphatic vessels grow to compensate for increased leakage during inflammation and what drives the lymphangiogenesis that does occur. We addressed these issues(More)
Vascular endothelial growth factors and their endothelial tyrosine kinase receptors are central regulators of vasculogenesis, angiogenesis and lymphangiogenesis. VEGF signalling through VEGFR-2 is the major angiogenic pathway, and blockage of VEGF/VEGFR-2 signalling is the first anti-angiogenic strategy for cancer therapy. VEGFR-1 seems to act as a negative(More)
Surgery or radiation therapy of metastatic cancer often damages lymph nodes, leading to secondary lymphedema. Here we show, using a newly established mouse model, that collecting lymphatic vessels can be regenerated and fused to lymph node transplants after lymph node removal. Treatment of lymph node–excised mice with adenovirally delivered vascular(More)
Angiogenesis, the growth of new blood vessels, involves specification of endothelial cells to tip cells and stalk cells, which is controlled by Notch signalling, whereas vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 have been implicated in angiogenic sprouting. Surprisingly, we found that endothelial deletion of Vegfr3, but not(More)
Angiopoietin 1 (Ang1), a ligand for the receptor tyrosine kinase Tie2, regulates the formation and stabilization of the blood vessel network during embryogenesis. In adults, Ang1 is associated with blood vessel stabilization and recruitment of perivascular cells, whereas Ang2 acts to counter these actions. Recent results from gene-targeted mice have shown(More)