Learn More
Tyrosine kinase inhibitors (TKIs) elicit high response rates among individuals with kinase-driven malignancies, including chronic myeloid leukemia (CML) and epidermal growth factor receptor-mutated non-small-cell lung cancer (EGFR NSCLC). However, the extent and duration of these responses are heterogeneous, suggesting the existence of genetic modifiers(More)
A tumor suppressor function has been attributed to RUNX3, a member of the RUNX family of transcription factors. Here, we examined alterations in the expression of three members, RUNX1, RUNX2, and RUNX3, and their interacting partner, CBF-beta, in breast cancer. Among them, RUNX3 was consistently underexpressed in breast cancer cell lines and primary tumors.(More)
Previous studies have shown that the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) is targeted for degradation by an SCF(Skp2) ubiquitin ligase complex and that this process requires Cks1, a member of the highly conserved Suc1/Cks family of cell cycle regulatory proteins. All proteins of this family have Cdk-binding and anion-binding sites, but only(More)
BACKGROUND & AIMS The transcription factor RUNX3 is a gastric tumor suppressor. Tumorigenic Runx3(-/-) gastric epithelial cells attach weakly to each other, compared with nontumorigenic Runx3(+/+) cells. We aimed to identify RUNX3 target genes that promote cell-cell contact to improve our understanding of RUNX3's role in suppressing gastric carcinogenesis.(More)
BCR-ABL1-specific tyrosine kinase inhibitors prolong the life of patients with chronic myeloid leukemia (CML) but cannot completely eradicate CML progenitors. The BH3 mimetic, ABT-263, targets prosurvival BCL2 family members, and has activity against CML progenitors. However, the inhibitory effect of ABT-263 on BCL-XL, which mediates platelet survival,(More)
Both germline polymorphisms and tumor-specific genetic alterations can determine the response of a cancer to a given therapy. We previously reported a germline deletion polymorphism in the BIM gene that was sufficient to mediate intrinsic resistance to tyrosine kinase inhibitors (TKI) in chronic myeloid leukemia (CML), as well as other cancers [1]. The(More)
Chronic myeloid leukemia (CML) treatment has been improved by tyrosine kinase inhibitors (TKIs) such as imatinib mesylate (IM) but various factors can cause TKI resistance in patients with CML. One factor which contributes to TKI resistance is a germline intronic deletion polymorphism in the BCL2-like 11 (BIM) gene which impairs the expression of(More)
To the Editor: We read with great interest the research of Ng et al.1, which established an association between a BCL2-like 11 (BIM) gene deletion polymorphism in East Asian populations and clinical resistance to imatinib, a tyrosine kinase inhibitor (TKI). They showed that the deletion resulted in expression of BIM isoforms lacking the proapoptotic(More)
  • 1