Learn More
Reported experimental and computational results confirm that both the flow features and heat-transfer rates inside a condenser depend on the specification of inlet, wall, and exit conditions. The results show that the commonly occurring condensing flows' special sensitivity to changes in exit conditions (i.e., changes in exit pressure) arises from the ease(More)
Coomassie Brilliant Blue is arguably the most common dye used in staining polyacrylamide electrophoresis gels. A densitometric analysis into the extent of coloring by the dye can provide a quantitative measure of the amount of protein present. In this work, the experimentally determined spectral optical density distributions of Coomassie Blue-stained gels(More)
Microplates for use in resource-limited laboratories should ideally not require processes that involve substantial large-scale production in order to be viable. We describe and demonstrate here an approach of using a silicone sheet with holes, conveniently cut out precisely using an inexpensive cutting plotter to correspond with regions where liquid is to(More)
In optical microscopy, the microscopic features of interest typically have to be derived from regions that are spatially distributed over the sample. While the features to be analyzed may be minute, the regions from where they must be obtained from may be located quite far apart from one another. If the features are not distinct enough to allow easy visual(More)
To overcome the limitations/disadvantages of many known liquid film thickness sensing devices (viz. conductivity probes, reflectance based fiber-optics probes, capacitance probes, etc.), a new liquid film thickness sensor that utilizes fluorescence phenomena and fiber-optic technology has been developed and reported here. Measurements from this sensor are(More)
Antibiotic resistance is a major risk to human health, and to provide valuable insights into mechanisms of resistance, innovative methods are needed to examine the cellular responses to antibiotic treatment. Focused ion beam tomography is proposed to image and assess the detailed three-dimensional (3D) ultrastructure of single bacterial cells. By(More)
Adhesion force sensed using tips on microcantilevers via an optical lever requires care to ensure that the tip alone contacts the liquid; is sensitive to high degrees of measurement error from departure from the laser spot; requires specialized optics and careful arrangement to produce a small laser probing spot; and limits the distance between cantilever(More)
We devised a dangling cantilever optical lever setup with imaging that permits dynamical studies of superhydrophobic surfaces without the effects of gravitational acceleration for better insight into the mechanics. The setup enabled us to ascertain liquid loss and ascribe it to the interaction of liquid that just touched the superhydrophobic surface as it(More)
Array-based tests in a microplate format are complicated by the regional variation in results of the outer against the inner wells of the plate. Analysis of the evaporation mechanics of sessile drops showed that evaporation rate increase with temperature was due to changes in the heat of vaporization, density and diffusion coefficient. In simulations of(More)
We report a novel approach to probe the interior of single bacterial cells at nanometre resolution by combining focused ion beam (FIB) and atomic force microscopy (AFM). After removing layers of pre-defined thickness in the order of 100 nm on the target bacterial cells with FIB milling, AFM of different modes can be employed to probe the cellular interior(More)