Tuck Seng Wong

Learn More
  • T S Wong
  • Journal of experimental psychology. Human…
  • 1977
In four experiments involving blindfolded subjects, constant errors in the haptic judgment of extent in the horizontal plane were found to relate consistently to the time and velocity of limb movement. Radial movements, executed at a slower speed and for a longer time, are judged longer than tangential movements of equal extent. The data were considered in(More)
Powerful directed evolution methods have been developed for tailoring proteins to our needs in industrial applications. Here, the authors report a medium-throughput assay system designed for screening mutant libraries of oxygenases capable of inserting a hydroxyl group into a C-H bond of aromatic or O-heterocyclic compounds and for exploring the substrate(More)
Over the past decade, we have witnessed a bloom in the field of evolutive protein engineering which is fueled by advances in molecular biology techniques and high-throughput screening technology. Directed protein evolution is a powerful algorithm using iterative cycles of random mutagenesis and screening for tailoring protein properties to our needs in(More)
Cytochrome p450 BM-3 (EC catalyzes the hydroxylation and/or epoxidation of a broad range of substrates, including alkanes, alkenes, alcohols, fatty acids, amides, polyaromatic hydrocarbons, and heterocycles. For many of these notoriously water-insoluble compounds, p450 BM-3's K(m) values are in the millimolar range. Polar organic cosolvents are(More)
Single-stranded DNA-binding proteins (SSB) form a class of proteins that bind preferentially single-stranded DNA with high affinity. They are involved in DNA metabolism in all organisms and serve a vital role in replication, recombination and repair of DNA. In this report, we identify human mitochondrial SSB (HmtSSB) as a novel protein-binding partner of(More)
Human mitochondrial transcription factor A (TFAM) is a multi-functional protein, involved in different aspects of maintaining mitochondrial genome integrity. In this report, we characterized TFAM and its interaction with tumor suppressor p53 using various biophysical methods. DNA-free TFAM is a thermally unstable protein that is in equilibrium between(More)
We have developed a statistical method named MAP (mutagenesis assistant program) to equip protein engineers with a tool to develop promising directed evolution strategies by comparing 19 mutagenesis methods. Instead of conventional transition/transversion bias indicators as benchmarks for comparison, we propose to use three indicators based on the subset of(More)
Directed evolution represents a versatile tool to tailor enzyme properties to needs in industrial applications and to understand structure-function relationships. Genetic diversity is commonly generated using error-prone PCR. Exploration of sequence space by random mutagenesis strongly favors transitions when enzyme-based mutagenesis methods are employed(More)
The sequence saturation mutagenesis (SeSaM) method has been advanced to a random mutagenesis method with adjustable mutational biases. SeSaM offers, for example, a bias that is complementary to error-prone (ep) PCR and is enriched in transversions (SeSaM-Tv(+)). dNTP alpha S and three degenerate bases (P, K and I) are used to control mutational bias(More)
Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning(More)