Learn More
Myelin damage, as seen in multiple sclerosis (MS) and other demyelinating diseases, impairs axonal conduction and can also be associated with axonal degeneration. Accurate assessments of these conditions may be highly beneficial in evaluating and selecting therapeutic strategies for patient management. Recently, an analytical approach examining diffusion(More)
Fibroblast growth factor 2 (FGF2) is an excellent candidate to regulate remyelination based on its proposed actions in oligodendrocyte lineage cell development in conjunction with its involvement in CNS regeneration. To assess the potential for FGF2 to play a role in remyelination, we examined the expression pattern of FGF2 and FGF receptors (FGFRs) in an(More)
Repair of myelin damage in the adult CNS requires oligodendrocyte progenitor (OP) proliferation and subsequent differentiation into remyelinating oligodendrocytes. Platelet-derived growth factor (PDGF) and fibroblast growth factor-2 (FGF2) have been predicted to act individually and/or cooperatively to generate remyelinating oligodendrocytes. Analysis of(More)
In multiple sclerosis lesions, remyelination typically fails with repeated or chronic demyelinating episodes and results in neurologic disability. Acute demyelination models in rodents typically exhibit robust spontaneous remyelination that prevents appropriate evaluation of strategies for improving conditions of insufficient remyelination. In the current(More)
This study takes advantage of fibroblast growth factor 2 (FGF2) knock-out mice to determine the contribution of FGF2 to the regeneration of oligodendrocytes in the adult CNS. The role of FGF2 during spontaneous remyelination was examined using two complementary mouse models of experimental demyelination. The murine hepatitis virus strain A59 (MHV-A59) model(More)
In multiple sclerosis, microglia/macrophage activation and astrocyte reactivity are important components of the lesion environment that can impact remyelination. The current study characterizes these glial populations relative to expression of candidate regulatory molecules in cuprizone demyelinated corpus callosum. Importantly, periods of recovery after(More)
Acute demyelination of adult CNS, resulting from trauma or disease, is initially followed by remyelination. However, chronic lesions with subsequent functional impairment result from eventual failure of the remyelination process, as seen in multiple sclerosis. Studies using animal models of successful remyelination delineate a progression of events(More)
The adult mammalian brain contains multiple populations of endogenous progenitor cell types. However, following CNS trauma or disease, the regenerative capacity of progenitor populations is typically insufficient and may actually be limited by non-permissive or inhibitory signals in the damaged parenchyma. Remyelination is the most effective and simplest(More)
Myelin transcription factor 1 (Myt1) is a zinc-finger DNA binding protein that influences developing oligodendrocyte progenitor (OP) cell proliferation, differentiation, and myelin gene transcription in vitro. The potential of Myt1 to play a role in OP responses leading to remyelination was examined using murine hepatitis virus strain A59 (MHV) to induce(More)
Childhood ataxia with diffuse central nervous system hypomyelination syndrome (CACH) is a recently described leukodystrophy of unknown etiology. To characterize the neuropathological features and gain insight as to the pathogenesis of this disorder, we studied cerebral tissue from six patients with the CACH syndrome. Evaluation of toluidine blue-stained,(More)