Learn More
Apoptosis signal-regulating kinase (ASK) 1 is a mitogen-activated protein kinase kinase kinase (MAP3K) in the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase pathways that play multiple important roles in cytokine and stress responses. Here we show that ASK2, a highly related serine/threonine kinase to ASK1, also functions as a MAP3K(More)
Nitric oxide (NO) produces rapid osteoclast detachment and contraction in vitro, and this effect is accompanied by a profound inhibition of bone resorption. Work by others has confirmed these findings in vivo: inhibition of NO synthase [NOS; L-arginine, NADPH: oxygen oxidoreductase (NO-forming), EC] in normal rats is followed by increased bone(More)
Apoptosis and inflammation generally exert opposite effects on tumorigenesis: apoptosis serves as a barrier to tumour initiation, whereas inflammation promotes tumorigenesis. Although both events are induced by various common stressors, relatively little is known about the stress-induced signalling pathways regulating these events in tumorigenesis. Here, we(More)
Changes in the osmolality of body fluids pose a serious danger to cells and living organisms, which have developed cellular systems to sense and respond to osmotic stress and to maintain homoeostasis of body fluid. However, these processes are incompletely understood in mammals. Here we show that apoptosis signal-regulating kinase 3 (ASK3) is predominantly(More)
To search for the signalling pathways in lung cancer relevant to its aggressive behaviour, we studied tyrosine phosphorylated proteins in lung cancer cell lines and surgical specimens. We found that the profiles of protein phosphorylation were closely matched among these cell lines and cancer tissues of different histological origins, and 100-130 kDa(More)
The With No lysine [K] (WNK)-Ste20-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway has been reported to be a crucial signaling pathway for triggering pseudohypoaldosteronism type II (PHAII), an autosomal dominant hereditary disease that is characterized by hypertension. However, the molecular mechanism(s) by(More)
Methylglyoxal (MG) is a reactive endogenous metabolite that is produced from the process of degradation of triose-phosphates. Under hyperglycemic conditions the rate of MG formation increases as a result of elevated concentrations of precursors. It has been established that MG elicits oxidative stress signaling, leading to the activation of MAP kinases, p38(More)