Learn More
We describe here the cloning and characterization of a cDNA encoding a protein kinase that has high sequence homology to members of the mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK or MEKK) family; this cDNA is named cATMEKKI (Arabidopsis thaliana MAP kinase or ERK kinase kinase 1). The catalytic domain of the putative ATMEKK1 protein shows(More)
ABI1 and ABI2 encode PP2C-type protein phosphatases and are thought to negatively regulate many aspects of abscisic acid (ABA) signaling, including stomatal closure in Arabidopsis. In contrast, SRK2E/OST1/SnRK2.6 encodes an Arabidopsis SnRK2 protein kinase and acts as a positive regulator in the ABA-induced stomatal closure. SRK2E/OST1 is activated by(More)
A cDNA corresponding to a putative phosphatidylinositol-specific phospholipase C (PI-PLC) in the higher plant Arabidopsis thaliana was cloned by use of the polymerase chain reaction. The cDNA, designated cAtPLC1, encodes a putative polypeptide of 561 aa with a calculated molecular mass of 64 kDa. The putative product includes so-called X and Y domains found(More)
The isolation and characterization is reported of a cDNA for delta 1-pyrroline-5-carboxylate (P5C) synthetase (cAtP5CS), an enzyme involved in the biosynthesis of proline, from a cDNA library prepared from a dehydrated rosette plant of Arabidopsis thaliana. Southern blot analysis suggested that only one copy of the corresponding gene (AtP5CS) is present in(More)
Several genes are known to regulate circadian rhythms in Arabidopsis, but the identity of the central oscillator has not been established. LHY and CCA1 are related MYB-like transcription factors proposed to be closely involved. Here we demonstrate that, as shown previously for CCA1, inactivation of LHY shortens the period of circadian rhythms in gene(More)
In plants, a number of MAP kinase (MAPK), MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK) homologues have been reported. However, there have been no reports of protein-protein interactions between these kinases or molecular analysis of MAPK cascades in higher plants. To analyze a possible MAPK cascade in Arabidopsis thaliana, we took two molecular(More)
Mitogen-activated protein kinase (MAP kinase, MAPK) cascades play pivotal roles in signal transduction of extracellular stimuli, such as environmental stresses and growth regulators, in various organisms. Arabidopsis thaliana MAP kinases constitute a gene family, but stimulatory signals for each MAP kinase have not been elucidated. Here we show that(More)
The circadian clock acts as the timekeeping mechanism in photoperiodism. In Arabidopsis thaliana, a circadian clock-controlled flowering pathway comprising the genes GIGANTEA (GI), CONSTANS (CO), and FLOWERING LOCUS T (FT) promotes flowering specifically under long days. Within this pathway, GI regulates circadian rhythms and flowering and acts earlier in(More)
Protein phosphorylation has pivotal roles in ABA and osmotic stress signaling in higher plants. Two protein phosphatase genes, ABI1 and ABI2, are known to regulate these signaling pathways in Arabidopsis: The identity of ABA-activated protein kinases required for the ABA signaling, however, remains to be elucidated. Here we demonstrate that two protein(More)
We previously reported two cDNAs for MAP kinases (cATMPK1 and cATMPK2) from a dicot plant, Arabidopsis thaliana. We describe here the cloning and characterization of five additional cDNAs encoding novel MAP kinases in Arabidopsis, cATMPK3, cATMPK4, cATMPK5, cATMPK6, and cATMPK7. The amino acid residues corresponding to the sites of phosphorylation(More)