Tsuyoshi Miyazaki

Learn More
A critical issue in today's super-aging society is the need to reduce the burden of family care while continuing to make our medical institutions supportive. A rapidly emerging, major health concern is the debilitating effect of muscle weakness and atrophy from aging, termed sarcopenia; however, the molecular basis of this condition is not well understood.(More)
To examine the role of mitogen-activated protein kinase and nuclear factor kappa B (NF-kappaB) pathways on osteoclast survival and activation, we constructed adenovirus vectors carrying various mutants of signaling molecules: dominant negative Ras (Ras(DN)), constitutively active MEK1 (MEK(CA)), dominant negative IkappaB kinase 2 (IKK(DN)), and(More)
The function of the nonreceptor tyrosine kinase c-Src as a plasma membrane-associated molecular effector of a variety of extracellular stimuli is well known. Here, we show that c-Src is also present within mitochondria, where it phosphorylates cytochrome c oxidase (Cox). Deleting the c-src gene reduces Cox activity, and this inhibitory effect is restored by(More)
Protein tyrosine phosphorylation is a major regulator of bone metabolism. Tyrosine phosphatases participate in regulating phosphorylation, but roles of specific phosphatases in bone metabolism are largely unknown. We demonstrate that young (<12 weeks) female mice lacking tyrosine phosphatase epsilon (PTPepsilon) exhibit increased trabecular bone mass due to(More)
To examine the role of mitogen-activated protein kinase and nuclear factor kappa B (NF-␬ B) pathways on osteoclast survival and activation, we constructed adenovirus vectors carrying various mutants of signaling molecules: dominant negative Ras (Ras DN), constitutively active MEK1 (MEK CA), dominant negative I ␬ B kinase 2 (IKK DN), and constitutively(More)
Targeted disruption of either c-Src or TNFR-associated factor 6 (TRAF6) in mice causes osteoclast dysfunction and an osteopetrotic phenotype, suggesting that both molecules play important roles in osteoclastic bone resorption. We previously demonstrated that IL-1 induces actin ring formation and osteoclast activation. In this study, we examined the(More)
Antibodies against acetylcholine receptors (AChRs) cause pathogenicity in myasthenia gravis (MG) patients through complement pathway-mediated destruction of postsynaptic membranes at neuromuscular junctions (NMJs). However, antibodies against muscle-specific kinase (MuSK), which constitute a major subclass of antibodies found in MG patients, do not activate(More)
Osteoporosis is an age-related systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility. Bone remodeling involves two types of cells: osteoblasts and osteoclasts. Receptor activator of nuclear factor-κB ligand (RANKL) is a key regulator of the formation and(More)
Abstract Viral nervous necrosis caused by sevenband grouper nervous necrosis virus (SGNNV) has occurred in grow-out stages (0-3 years old) of sevenband grouper, Epinephelus septemfasciatus, since the 1980s. In the present study, based on histopathological features of the central nervous system (CNS) in naturally diseased fish, pernasal infection experiments(More)
Mature osteoclasts, multinucleated giant cells responsible for bone resorption, are terminally differentiated cells with a short life span. Recently, we have demonstrated that osteoclast apoptosis is regulated by ERK activity and Bcl-2 family member Bim. In this paper, we summarize the methods we used to study osteoclast apoptosis in vitro and in vivo.(More)