Tsuyoshi Ikegami

Learn More
As long as we only focus on kinematics, rhythmic movement appears to be a concatenation of discrete movements or discrete movement appears to be a truncated rhythmic movement. However, whether or not the neural control processes of discrete and rhythmic movements are distinct has not yet been clearly understood. Here, we address this issue by examining the(More)
Understanding how the brain learns motor skills remains a very challenging task. To elucidate the neural mechanism underlying motor learning, we assessed brain activation changes on a trial-by-trial basis during learning of a multi-joint discrete motor task (kendama task). We used multi-channel near-infrared spectroscopy (NIRS) while simultaneously(More)
Movement error is a driving force behind motor learning. For motor learning with discrete movements, such as point-to-point reaching, it is believed that the brain uses error information of the immediately preceding movement only. However, in the case of continuous and repetitive movements (i.e., rhythmic movements), there is a ceaseless inflow of(More)
  • 1