Tsuyoshi Horikawa

Learn More
We propose for the first time the Mod-MUX-Ring architecture for microring based WDM transmitter. A prototype Mod-MUX-Ring transmitter with 4 channels and 400 GHz channel spacing is demonstrated and fully characterized at 40 Gb/s channel rate. Under 2.7 V driving voltage, error-free (BER < 10 −12) operation is achieved on all channels, with 3 dB extinction(More)
We report a Ge-on-Si photodetector without doped Ge or Ge-metal contacts. Despite the simplified fabrication process, the device shows a responsivity of 1.14 A/W at −4 V reverse bias and 1.44 A/W at −12V, at 1550 nm wavelength. Dark current is less than 1µA under both bias conditions. We also demonstrate open eye diagrams at 40Gb/s. A single adiabatic(More)
We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac(More)
Silicon optical interposers for inter-chip interconnects, integrated with lasers, an optical splitter, optical modulators and germanium photodetectors on a single silicon substrate were demonstrated. A 12.5-Gbps error-free data transmission and 6.6-Tbps/cm 2 transmission density were achieved.
SUMMARY One of the most serious challenges facing the exponential performance growth in the information industry is a bandwidth bottleneck in inter-chip interconnects. We therefore propose a photonics-electronics convergence system with a silicon optical interposer. We examined integration between photonics and electronics and integration between light(More)
  • 1